↓ Skip to main content

Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450

Overview of attention for book
Cover of 'Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Monooxygenase, Peroxidase and Peroxygenase Properties and Reaction Mechanisms of Cytochrome P450 Enzymes
  3. Altmetric Badge
    Chapter 2 Oxidizing Intermediates in P450 Catalysis: A Case for Multiple Oxidants
  4. Altmetric Badge
    Chapter 3 Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions.
  5. Altmetric Badge
    Chapter 4 Acyl-Carbon Bond Cleaving Cytochrome P450 Enzymes: CYP17A1, CYP19A1 and CYP51A1
  6. Altmetric Badge
    Chapter 5 Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates
  7. Altmetric Badge
    Chapter 6 Cytochrome P450 Enzymes in the Bioactivation of Polyunsaturated Fatty Acids and Their Role in Cardiovascular Disease.
  8. Altmetric Badge
    Chapter 7 Monooxygenation of Small Hydrocarbons Catalyzed by Bacterial Cytochrome P450s
  9. Altmetric Badge
    Chapter 8 Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates
  10. Altmetric Badge
    Chapter 9 Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources.
  11. Altmetric Badge
    Chapter 10 Mechanistic Basis of Electron Transfer to Cytochromes P450 by Natural Redox Partners and Artificial Donor Constructs
  12. Altmetric Badge
    Chapter 11 Biological Diversity of Cytochrome P450 Redox Partner Systems.
  13. Altmetric Badge
    Chapter 12 Cytochrome P450cin (CYP176A1)
  14. Altmetric Badge
    Chapter 13 Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties
Attention for Chapter 5: Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates
Altmetric Badge

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates
Chapter number 5
Book title
Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-16009-2_5
Pubmed ID
Book ISBNs
978-3-31-916008-5, 978-3-31-916009-2
Authors

Claudio A. Erratico, Anand K. Deo, Stelvio M. Bandiera

Abstract

Hepatic microsomal cytochrome P450 (CYP) enzymes have broad and overlapping substrate specificity and catalyze a variety of monooxygenase reactions, including aliphatic and aromatic hydroxylations, N-hydroxylations, oxygenations of heteroatoms (N, S, P and I), alkene and arene epoxidations, dehalogenations, dehydrogenations and N-, O- and S-dealkylations. Individual CYP enzymes typically catalyze the oxidative metabolism of a common substrate in a regioselective and stereoselective manner. In addition, different CYP enzymes often utilize different monooxygenase reactions when oxidizing a common substrate. This review examines various oxidative reactions catalyzed by a CYP enzyme acting on a single substrate. In the first example, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a halogenated aromatic environmental contaminant, was oxidatively biotransformed by human CYP2B6. Nine different metabolites of BDE-47 were produced by CYP2B6 via monooxygenase reactions that included aromatic hydroxylation, with and without an NIH-shift, dealkylation and debromination. In the second example, lithocholic acid (3α-hydroxy-5β-cholan-24-oic acid), an endogenous bile acid, served as a substrate for human CYP3A4 and yielded five different metabolites via aliphatic hydroxylation and dehydrogenation reactions.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 2 22%
Student > Bachelor 2 22%
Student > Ph. D. Student 1 11%
Researcher 1 11%
Student > Doctoral Student 1 11%
Other 0 0%
Unknown 2 22%
Readers by discipline Count As %
Unspecified 2 22%
Biochemistry, Genetics and Molecular Biology 2 22%
Agricultural and Biological Sciences 1 11%
Chemistry 1 11%
Medicine and Dentistry 1 11%
Other 0 0%
Unknown 2 22%