↓ Skip to main content

Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450

Overview of attention for book
Cover of 'Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Monooxygenase, Peroxidase and Peroxygenase Properties and Reaction Mechanisms of Cytochrome P450 Enzymes
  3. Altmetric Badge
    Chapter 2 Oxidizing Intermediates in P450 Catalysis: A Case for Multiple Oxidants
  4. Altmetric Badge
    Chapter 3 Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions.
  5. Altmetric Badge
    Chapter 4 Acyl-Carbon Bond Cleaving Cytochrome P450 Enzymes: CYP17A1, CYP19A1 and CYP51A1
  6. Altmetric Badge
    Chapter 5 Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates
  7. Altmetric Badge
    Chapter 6 Cytochrome P450 Enzymes in the Bioactivation of Polyunsaturated Fatty Acids and Their Role in Cardiovascular Disease.
  8. Altmetric Badge
    Chapter 7 Monooxygenation of Small Hydrocarbons Catalyzed by Bacterial Cytochrome P450s
  9. Altmetric Badge
    Chapter 8 Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates
  10. Altmetric Badge
    Chapter 9 Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources.
  11. Altmetric Badge
    Chapter 10 Mechanistic Basis of Electron Transfer to Cytochromes P450 by Natural Redox Partners and Artificial Donor Constructs
  12. Altmetric Badge
    Chapter 11 Biological Diversity of Cytochrome P450 Redox Partner Systems.
  13. Altmetric Badge
    Chapter 12 Cytochrome P450cin (CYP176A1)
  14. Altmetric Badge
    Chapter 13 Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties
Attention for Chapter 8: Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates
Altmetric Badge

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates
Chapter number 8
Book title
Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-16009-2_8
Pubmed ID
Book ISBNs
978-3-31-916008-5, 978-3-31-916009-2
Authors

Karine Auclair, Vanja Polic

Abstract

Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Student > Bachelor 2 13%
Researcher 2 13%
Student > Master 2 13%
Student > Doctoral Student 1 7%
Other 3 20%
Unknown 1 7%
Readers by discipline Count As %
Chemistry 4 27%
Agricultural and Biological Sciences 3 20%
Biochemistry, Genetics and Molecular Biology 2 13%
Business, Management and Accounting 1 7%
Chemical Engineering 1 7%
Other 2 13%
Unknown 2 13%