↓ Skip to main content

Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450

Overview of attention for book
Cover of 'Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Monooxygenase, Peroxidase and Peroxygenase Properties and Reaction Mechanisms of Cytochrome P450 Enzymes
  3. Altmetric Badge
    Chapter 2 Oxidizing Intermediates in P450 Catalysis: A Case for Multiple Oxidants
  4. Altmetric Badge
    Chapter 3 Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions.
  5. Altmetric Badge
    Chapter 4 Acyl-Carbon Bond Cleaving Cytochrome P450 Enzymes: CYP17A1, CYP19A1 and CYP51A1
  6. Altmetric Badge
    Chapter 5 Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates
  7. Altmetric Badge
    Chapter 6 Cytochrome P450 Enzymes in the Bioactivation of Polyunsaturated Fatty Acids and Their Role in Cardiovascular Disease.
  8. Altmetric Badge
    Chapter 7 Monooxygenation of Small Hydrocarbons Catalyzed by Bacterial Cytochrome P450s
  9. Altmetric Badge
    Chapter 8 Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates
  10. Altmetric Badge
    Chapter 9 Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources.
  11. Altmetric Badge
    Chapter 10 Mechanistic Basis of Electron Transfer to Cytochromes P450 by Natural Redox Partners and Artificial Donor Constructs
  12. Altmetric Badge
    Chapter 11 Biological Diversity of Cytochrome P450 Redox Partner Systems.
  13. Altmetric Badge
    Chapter 12 Cytochrome P450cin (CYP176A1)
  14. Altmetric Badge
    Chapter 13 Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties
Attention for Chapter 11: Biological Diversity of Cytochrome P450 Redox Partner Systems.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Biological Diversity of Cytochrome P450 Redox Partner Systems.
Chapter number 11
Book title
Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-16009-2_11
Pubmed ID
Book ISBNs
978-3-31-916008-5, 978-3-31-916009-2
Authors

McLean, Kirsty J, Luciakova, Dominika, Belcher, James, Tee, Kang Lan, Munro, Andrew W, McLean, Kirsty J., Munro, Andrew W., Kirsty J. McLean, Dominika Luciakova, James Belcher, Kang Lan Tee, Andrew W. Munro

Abstract

Cytochrome P450 enzymes (P450s or CYPs) catalyze an enormous variety of oxidative reactions in organisms from all major domains of life. Their monooxygenase activity relies on the reductive scission of molecular oxygen (O2) bound to P450 heme iron, and thus on the delivery of two electrons to the heme iron at discrete points in the catalytic cycle. Early studies suggested that P450 redox partner machinery fell into only two major classes: either the eukaryotic diflavin enzyme NADPH-cytochrome P450 oxidoreductase, or bacterial/mitochondrial NAD(P)H-ferredoxin reductase and ferredoxin partners. However, more recent studies, aided by genome sequence data, reveal a much more complex scenario. Several new types of P450 redox partner systems have now been characterized, including P450s naturally linked to their redox partners, or to a component protein of their P450 electron delivery system. Other P450s have evolved to bypass requirements for redox partners, and instead react directly with hydrogen peroxide or NAD(P)H to facilitate oxidative or reductive catalysis. Further P450s are fused to non-redox partner enzymes and can catalyse consecutive reactions in a common pathway. This chapter describes the biochemistry and the enormous natural diversity of P450 redox systems, including descriptions of novel P450s fused to non-redox partner proteins.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
United States 1 1%
Unknown 72 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 22%
Student > Master 14 19%
Student > Bachelor 8 11%
Researcher 7 9%
Student > Doctoral Student 3 4%
Other 8 11%
Unknown 18 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 26%
Biochemistry, Genetics and Molecular Biology 15 20%
Chemistry 12 16%
Medicine and Dentistry 4 5%
Unspecified 2 3%
Other 5 7%
Unknown 17 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2017.
All research outputs
#16,397,951
of 24,157,645 outputs
Outputs from Advances in experimental medicine and biology
#2,658
of 5,164 outputs
Outputs of similar age
#217,327
of 361,061 outputs
Outputs of similar age from Advances in experimental medicine and biology
#127
of 273 outputs
Altmetric has tracked 24,157,645 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,164 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,061 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 273 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.