↓ Skip to main content

MicroRNA Protocols

Overview of attention for book
Cover of 'MicroRNA Protocols'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The MicroRNA
  3. Altmetric Badge
    Chapter 2 Target mRNA-Driven Biogenesis of Cognate MicroRNAs In Vitro
  4. Altmetric Badge
    Chapter 3 Isolation of Viral-Infected Brain Regions for miRNA Profiling from Formalin-Fixed Paraffin-Embedded Tissues by Laser Capture Microdissection
  5. Altmetric Badge
    Chapter 4 Isolation and Analysis of Exosomal MicroRNAs from Ovarian Follicular Fluid
  6. Altmetric Badge
    Chapter 5 Profiling of MicroRNAs in the Biofluids of Livestock Species
  7. Altmetric Badge
    Chapter 6 Exosomal MicroRNAs as Potential Biomarkers in Neuropsychiatric Disorders
  8. Altmetric Badge
    Chapter 7 Identification and Validation of Potential Differential miRNA Regulation via Alternative Polyadenylation
  9. Altmetric Badge
    Chapter 8 How to Explore the Function and Importance of MicroRNAs: MicroRNAs Expression Profile and Their Target/Pathway Prediction in Bovine Ovarian Cells
  10. Altmetric Badge
    Chapter 9 Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs
  11. Altmetric Badge
    Chapter 10 Mining Exosomal MicroRNAs from Human-Induced Pluripotent Stem Cells-Derived Cardiomyocytes for Cardiac Regeneration
  12. Altmetric Badge
    Chapter 11 Quantitative Analysis of Precursors MicroRNAs and Their Respective Mature MicroRNAs in Cancer Exosomes Overtime
  13. Altmetric Badge
    Chapter 12 Quantum Language of MicroRNA: Application for New Cancer Therapeutic Targets
  14. Altmetric Badge
    Chapter 13 In Vitro Methods for Analyzing miRNA Roles in Cancer Cell Proliferation, Invasion, and Metastasis
  15. Altmetric Badge
    Chapter 14 Isolation and Identification of Gene-Specific MicroRNAs
  16. Altmetric Badge
    Chapter 15 Comprehensive Measurement of Gene Silencing Involving Endogenous MicroRNAs in Mammalian Cells
  17. Altmetric Badge
    Chapter 16 Screening miRNA for Functional Significance by 3D Cell Culture System
  18. Altmetric Badge
    Chapter 17 Neonatal Rat Cardiomyocytes Isolation, Culture, and Determination of MicroRNAs’ Effects in Proliferation
  19. Altmetric Badge
    Chapter 18 Gene Manipulation with Micro RNAs at Single-Human Cancer Cell
  20. Altmetric Badge
    Chapter 19 Laser Capture Microdissection of Epithelium from a Wound Healing Model for MicroRNA Analysis
  21. Altmetric Badge
    Chapter 20 Transgene-Like Animal Models Using Intronic MicroRNAs
  22. Altmetric Badge
    Chapter 21 Application of TALE-Based Approach for Dissecting Functional MicroRNA-302/367 in Cellular Reprogramming
  23. Altmetric Badge
    Chapter 22 Mechanism and Method for Generating Tumor-Free iPS Cells Using Intronic MicroRNA miR-302 Induction
  24. Altmetric Badge
    Chapter 23 The miR-302-Mediated Induction of Pluripotent Stem Cells (iPSC): Multiple Synergistic Reprogramming Mechanisms
  25. Altmetric Badge
    Chapter 24 Identification and Isolation of Novel Sugar-Like RNA Protecting Materials: Glycylglycerins from Pluripotent Stem Cells
Attention for Chapter 22: Mechanism and Method for Generating Tumor-Free iPS Cells Using Intronic MicroRNA miR-302 Induction
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Mechanism and Method for Generating Tumor-Free iPS Cells Using Intronic MicroRNA miR-302 Induction
Chapter number 22
Book title
MicroRNA Protocols
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7601-0_22
Pubmed ID
Book ISBNs
978-1-4939-7600-3, 978-1-4939-7601-0
Authors

Shi-Lung Lin, Shao-Yao Ying, Lin, Shi-Lung, Ying, Shao-Yao

Abstract

Today's researchers generating induced pluripotent stem cells (iPS cells or iPSCs) usually consider their pluripotency rather than potential tumorigenicity. Oncogenic factors such as c-Myc and Klf4 are frequently used to boost the survival and proliferative rates of iPSCs, creating an inevitable problem of tumorigenicity that hinders the therapeutic usefulness of these iPSCs. To prevent stem cell tumorigenicity, we have examined mechanisms by which the cell cycle genes are regulated in embryonic stem cells (ESCs). Naturally, ESCs possess two unique stemness properties: pluripotent differentiation into almost all cell types and unlimited self-renewal without the risk of tumor formation. These two features are also important for the use of ESCs or iPSCs in therapy. Currently, despite overwhelming reports describing iPSC pluripotency, there is no report of any tumor prevention mechanism in either ESCs or iPSCs. To this, our studies have revealed for the first time that an ESC-specific microRNA (miRNA), miR-302, regulates human iPSC tumorigenicity through cosuppression of both cyclin E-CDK2 and cyclin D-CDK4/6 cell cycle pathways during G1-S phase transition. Moreover, miR-302 also silences BMI-1, a cancer stem cell gene marker, to promote the expression of two senescence-associated tumor suppressor genes, p16Ink4a and p14/p19Arf. Together, the combinatory effects of inhibiting G1-S cell cycle transition and increasing p16/p14(p19) expression result in an attenuated cell cycle rate similar to that of 2-to-8-cell-stage embryonic cells in early zygotes (20-24 h/cycle), which is however slower than the fast proliferation rate of iPSCs induced by the four defined factors Oct4-Sox2-Klf4-c-Myc (12-16 h/cycle). These findings provide a means to control iPSC tumorigenicity and improve the safety of iPSCs for the therapeutic use. In this chapter, we review the mechanism underlying miR-302-mediated tumor suppression and then demonstrate how to apply this mechanism to generate tumor-free iPSCs. The same strategy may also be used to prevent ESC tumorigenicity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 23%
Student > Bachelor 4 15%
Student > Ph. D. Student 3 12%
Lecturer 2 8%
Researcher 2 8%
Other 2 8%
Unknown 7 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 23%
Medicine and Dentistry 5 19%
Agricultural and Biological Sciences 3 12%
Engineering 2 8%
Psychology 1 4%
Other 1 4%
Unknown 8 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2018.
All research outputs
#18,587,406
of 23,023,224 outputs
Outputs from Methods in molecular biology
#7,965
of 13,166 outputs
Outputs of similar age
#330,565
of 442,364 outputs
Outputs of similar age from Methods in molecular biology
#950
of 1,498 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,166 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,364 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.