↓ Skip to main content

Molecular Mechanisms of Notch Signaling

Overview of attention for book
Attention for Chapter 8: Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases
Chapter number 8
Book title
Molecular Mechanisms of Notch Signaling
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-3-319-89512-3_8
Pubmed ID
Book ISBNs
978-3-31-989511-6, 978-3-31-989512-3
Authors

Jose L. Salazar, Shinya Yamamoto

Abstract

Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 20%
Student > Ph. D. Student 9 17%
Student > Bachelor 7 13%
Student > Master 4 7%
Student > Postgraduate 3 6%
Other 9 17%
Unknown 11 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 46%
Agricultural and Biological Sciences 5 9%
Medicine and Dentistry 3 6%
Unspecified 2 4%
Neuroscience 2 4%
Other 4 7%
Unknown 13 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2018.
All research outputs
#19,015,492
of 23,577,654 outputs
Outputs from Advances in experimental medicine and biology
#3,405
of 5,040 outputs
Outputs of similar age
#333,752
of 444,928 outputs
Outputs of similar age from Advances in experimental medicine and biology
#155
of 237 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,040 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 444,928 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.