↓ Skip to main content

In Vitro Mutagenesis

Overview of attention for book
Cover of 'In Vitro Mutagenesis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
  3. Altmetric Badge
    Chapter 2 Mutagenesis and Genome Engineering of Epstein-Barr Virus in Cultured Human Cells by CRISPR/Cas9.
  4. Altmetric Badge
    Chapter 3 Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
  5. Altmetric Badge
    Chapter 4 All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
  6. Altmetric Badge
    Chapter 5 CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.
  7. Altmetric Badge
    Chapter 6 Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii.
  8. Altmetric Badge
    Chapter 7 Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
  9. Altmetric Badge
    Chapter 8 Efficient Generation of Gene-Modified Mice by Haploid Embryonic Stem Cell-Mediated Semi-cloned Technology.
  10. Altmetric Badge
    Chapter 9 Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes.
  11. Altmetric Badge
    Chapter 10 Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells.
  12. Altmetric Badge
    Chapter 11 Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis.
  13. Altmetric Badge
    Chapter 12 In Silico Approaches to Identify Mutagenesis Targets to Probe and Alter Protein-Cofactor and Protein-Protein Functional Relationships.
  14. Altmetric Badge
    Chapter 13 In Silico Prediction of Deleteriousness for Nonsynonymous and Splice-Altering Single Nucleotide Variants in the Human Genome.
  15. Altmetric Badge
    Chapter 14 In Silico Methods for Analyzing Mutagenesis Targets.
  16. Altmetric Badge
    Chapter 15 Methods for Detecting Critical Residues in Proteins.
  17. Altmetric Badge
    Chapter 16 A Method for Bioinformatic Analysis of Transposon Insertion Sequencing (INSeq) Results for Identification of Microbial Fitness Determinants.
  18. Altmetric Badge
    Chapter 17 Application of In Vitro Transposon Mutagenesis to Erythromycin Strain Improvement in Saccharopolyspora erythraea.
  19. Altmetric Badge
    Chapter 18 Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors.
  20. Altmetric Badge
    Chapter 19 PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.
  21. Altmetric Badge
    Chapter 20 Transposon Insertion Mutagenesis for Archaeal Gene Discovery.
  22. Altmetric Badge
    Chapter 21 Genome-Wide Transposon Mutagenesis in Mycobacterium tuberculosis and Mycobacterium smegmatis.
  23. Altmetric Badge
    Chapter 22 Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method.
  24. Altmetric Badge
    Chapter 23 Seamless Ligation Cloning Extract (SLiCE) Method Using Cell Lysates from Laboratory Escherichia coli Strains and its Application to SLiP Site-Directed Mutagenesis.
  25. Altmetric Badge
    Chapter 24 Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.
  26. Altmetric Badge
    Chapter 25 Revised Mechanism and Improved Efficiency of the QuikChange Site-Directed Mutagenesis Method.
  27. Altmetric Badge
    Chapter 26 An In Vitro Single-Primer Site-Directed Mutagenesis Method for Use in Biotechnology.
  28. Altmetric Badge
    Chapter 27 Use of Megaprimer and Overlapping Extension PCR (OE-PCR) to Mutagenize and Enhance Cyclodextrin Glucosyltransferase (CGTase) Function.
  29. Altmetric Badge
    Chapter 28 Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL.
  30. Altmetric Badge
    Chapter 29 Analytical Methods for Assessing the Effects of Site-Directed Mutagenesis on Protein-Cofactor and Protein-Protein Functional Relationships.
  31. Altmetric Badge
    Chapter 30 Biochemical and Biophysical Methods to Examine the Effects of Site-Directed Mutagenesis on Enzymatic Activities and Interprotein Interactions.
  32. Altmetric Badge
    Chapter 31 Use of Random and Site-Directed Mutagenesis to Probe Protein Structure-Function Relationships: Applied Techniques in the Study of Helicobacter pylori.
  33. Altmetric Badge
    Chapter 32 Novel Random Mutagenesis Method for Directed Evolution.
  34. Altmetric Badge
    Chapter 33 Random Mutagenesis by Error-Prone Polymerase Chain Reaction Using a Heavy Water Solvent.
  35. Altmetric Badge
    Chapter 34 Development and Use of a Novel Random Mutagenesis Method: In Situ Error-Prone PCR (is-epPCR).
Attention for Chapter 13: In Silico Prediction of Deleteriousness for Nonsynonymous and Splice-Altering Single Nucleotide Variants in the Human Genome.
Altmetric Badge

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
In Silico Prediction of Deleteriousness for Nonsynonymous and Splice-Altering Single Nucleotide Variants in the Human Genome.
Chapter number 13
Book title
In Vitro Mutagenesis
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6472-7_13
Pubmed ID
Book ISBNs
978-1-4939-6470-3, 978-1-4939-6472-7
Authors

Xueqiu Jian, Xiaoming Liu

Editors

Andrew Reeves

Abstract

In silico prediction methods have increasingly been valuable and popular in molecular biology, especially in human genetics, for deleteriousness prediction to filter and prioritize huge amounts of DNA variation identified by sequencing human genomes. There is a rich collection of available methods developed upon different levels/aspects of knowledge about how DNA variations affect gene expression. Given the fact that their predictions are not always consistent or even opposite of what was expected, using consensus prediction or majority vote among these methods is preferred to trusting any single one. Because querying different databases for different methods is both tedious and time-consuming for such big data sets, one database integrating predictions from multiple databases can facilitate the process. In this chapter, we describe the general steps of obtaining comprehensive predictions and annotations for large numbers of variants from dbNSFP, the first and probably the most widely used database of its kind.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 20%
Student > Doctoral Student 3 15%
Student > Ph. D. Student 3 15%
Other 2 10%
Student > Master 2 10%
Other 3 15%
Unknown 3 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 50%
Medicine and Dentistry 3 15%
Agricultural and Biological Sciences 1 5%
Mathematics 1 5%
Neuroscience 1 5%
Other 1 5%
Unknown 3 15%