↓ Skip to main content

DNA Methyltransferases - Role and Function

Overview of attention for book
Cover of 'DNA Methyltransferases - Role and Function'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges.
  3. Altmetric Badge
    Chapter 2 DNA and RNA Pyrimidine Nucleobase Alkylation at the Carbon-5 Position.
  4. Altmetric Badge
    Chapter 3 Bacterial DNA Methylation and Methylomes.
  5. Altmetric Badge
    Chapter 4 Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases.
  6. Altmetric Badge
    Chapter 5 Enzymology of Mammalian DNA Methyltransferases.
  7. Altmetric Badge
    Chapter 6 Genetic Studies on Mammalian DNA Methyltransferases.
  8. Altmetric Badge
    Chapter 7 The Role of DNA Methylation in Cancer.
  9. Altmetric Badge
    Chapter 8 DNA Methyltransferases - Role and Function
  10. Altmetric Badge
    Chapter 9 DNA Methyltransferases - Role and Function
  11. Altmetric Badge
    Chapter 10 N6-Methyladenine: A Conserved and Dynamic DNA Mark.
  12. Altmetric Badge
    Chapter 11 Pathways of DNA Demethylation.
  13. Altmetric Badge
    Chapter 12 Structure and Function of TET Enzymes.
  14. Altmetric Badge
    Chapter 13 Proteins That Read DNA Methylation.
  15. Altmetric Badge
    Chapter 14 DNA Methyltransferases - Role and Function
  16. Altmetric Badge
    Chapter 15 DNA Methyltransferases - Role and Function
  17. Altmetric Badge
    Chapter 16 DNA Methyltransferase Inhibitors: Development and Applications.
  18. Altmetric Badge
    Chapter 17 DNA Methyltransferases - Role and Function
  19. Altmetric Badge
    Chapter 18 Engineering and Directed Evolution of DNA Methyltransferases.
  20. Altmetric Badge
    Chapter 19 DNA Labeling Using DNA Methyltransferases.
Attention for Chapter 5: Enzymology of Mammalian DNA Methyltransferases.
Altmetric Badge

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Enzymology of Mammalian DNA Methyltransferases.
Chapter number 5
Book title
DNA Methyltransferases - Role and Function
Published in
Advances in experimental medicine and biology, November 2016
DOI 10.1007/978-3-319-43624-1_5
Pubmed ID
Book ISBNs
978-3-31-943622-7, 978-3-31-943624-1
Authors

Renata Z. Jurkowska, Albert Jeltsch

Editors

Albert Jeltsch, Renata Z. Jurkowska

Abstract

DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 19%
Student > Ph. D. Student 5 16%
Student > Master 4 13%
Student > Bachelor 2 6%
Professor 2 6%
Other 5 16%
Unknown 8 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 44%
Agricultural and Biological Sciences 4 13%
Medicine and Dentistry 2 6%
Immunology and Microbiology 2 6%
Nursing and Health Professions 1 3%
Other 0 0%
Unknown 9 28%