↓ Skip to main content

Small Molecule Microarrays

Overview of attention for book
Cover of 'Small Molecule Microarrays'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Expanding World of Small Molecule Microarrays
  3. Altmetric Badge
    Chapter 2 Novel Substrates for Microarrays
  4. Altmetric Badge
    Chapter 3 Fabrication of Bio-function-Preserved Saccharide Microarray Chips with Cyanuric Chloride as a Rotatable Linker
  5. Altmetric Badge
    Chapter 4 Fabrication of Carbohydrate Microarrays by Boronate Formation
  6. Altmetric Badge
    Chapter 5 Clickable Polymeric Coating for Glycan Microarrays
  7. Altmetric Badge
    Chapter 6 A Versatile Microarray Immobilization Strategy Based on a Biorthogonal Reaction Between Tetrazine and Trans-Cyclooctene
  8. Altmetric Badge
    Chapter 7 Label-Free Sensing on Microarrays
  9. Altmetric Badge
    Chapter 8 Optical Microscopy for Detecting Binding on Small Molecule Microarrays
  10. Altmetric Badge
    Chapter 9 Array-on-Array Strategy For Activity-Based Enzyme Profiling
  11. Altmetric Badge
    Chapter 10 Protein–Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays
  12. Altmetric Badge
    Chapter 11 Discovery of RNA Binding Small Molecules Using Small Molecule Microarrays
  13. Altmetric Badge
    Chapter 12 Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays
  14. Altmetric Badge
    Chapter 13 Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays
  15. Altmetric Badge
    Chapter 14 Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes
  16. Altmetric Badge
    Chapter 15 Synthetic Glycan Microarrays
  17. Altmetric Badge
    Chapter 16 Screening Mammalian Cells on a Hydrogel: Functionalized Small Molecule Microarray
Attention for Chapter 3: Fabrication of Bio-function-Preserved Saccharide Microarray Chips with Cyanuric Chloride as a Rotatable Linker
Altmetric Badge

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Fabrication of Bio-function-Preserved Saccharide Microarray Chips with Cyanuric Chloride as a Rotatable Linker
Chapter number 3
Book title
Small Molecule Microarrays
Published in
Methods in molecular biology, November 2016
DOI 10.1007/978-1-4939-6584-7_3
Pubmed ID
Book ISBNs
978-1-4939-6582-3, 978-1-4939-6584-7
Authors

Yi Chen, Chanjuan Liu, Xiao Wang

Editors

Mahesh Uttamchandani, Shao Q. Yao

Abstract

Microarray-based saccharide chips possess an inherent property of high throughput but remain hard to use in practice due mainly to their fabrication problems, which have led to many strategies proposed but nearly none can immobilize small saccharides without losing their bio-affinity. Herein introduced is an easy strategy able to directly immobilize all intact saccharides on solid surface with excellent preservation of their molecular recognition ability. The core idea is to anchor a saccharide molecule on a universally rotatable molecular frame to free its spatial adjustment during molecular recognition process. This strategy can simply be realized by use of cyanuric chloride as a rotatable linker which offers three reactive chlorines pointing at 120°. The first chlorine can readily react with hydroxyl groups at only 0-5 °C, enabling one to "plant" a layer of Y-shaped rotatable linker on hydroxyl-terminated surfaces. This facilitates the second chlorine on one of the upper "Y-branch" to react with saccharides at ca. 25 °C, a very convenient room temperature for practical manipulation. The third chlorine can further react with saccharides but at ca. 50 °C which is not too difficult to manipulate but commonly is not utilized. This chemical strategy has been exploited to dot various intact hydroxyl substances on either gold or glass surfaces, and the recognition ability of the anchored saccharides with their right lectins was validated to be well preserved according to surface plasmon resonance and/or laser-induced fluorescence imaging data. Furthermore the method is extendable to amines and other substances able to be hydroxylated and/or aminated.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 1 25%
Professor > Associate Professor 1 25%
Student > Doctoral Student 1 25%
Unknown 1 25%
Readers by discipline Count As %
Chemistry 2 50%
Biochemistry, Genetics and Molecular Biology 1 25%
Unknown 1 25%