↓ Skip to main content

Small Molecule Microarrays

Overview of attention for book
Cover of 'Small Molecule Microarrays'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Expanding World of Small Molecule Microarrays
  3. Altmetric Badge
    Chapter 2 Novel Substrates for Microarrays
  4. Altmetric Badge
    Chapter 3 Fabrication of Bio-function-Preserved Saccharide Microarray Chips with Cyanuric Chloride as a Rotatable Linker
  5. Altmetric Badge
    Chapter 4 Fabrication of Carbohydrate Microarrays by Boronate Formation
  6. Altmetric Badge
    Chapter 5 Clickable Polymeric Coating for Glycan Microarrays
  7. Altmetric Badge
    Chapter 6 A Versatile Microarray Immobilization Strategy Based on a Biorthogonal Reaction Between Tetrazine and Trans-Cyclooctene
  8. Altmetric Badge
    Chapter 7 Label-Free Sensing on Microarrays
  9. Altmetric Badge
    Chapter 8 Optical Microscopy for Detecting Binding on Small Molecule Microarrays
  10. Altmetric Badge
    Chapter 9 Array-on-Array Strategy For Activity-Based Enzyme Profiling
  11. Altmetric Badge
    Chapter 10 Protein–Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays
  12. Altmetric Badge
    Chapter 11 Discovery of RNA Binding Small Molecules Using Small Molecule Microarrays
  13. Altmetric Badge
    Chapter 12 Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays
  14. Altmetric Badge
    Chapter 13 Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays
  15. Altmetric Badge
    Chapter 14 Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes
  16. Altmetric Badge
    Chapter 15 Synthetic Glycan Microarrays
  17. Altmetric Badge
    Chapter 16 Screening Mammalian Cells on a Hydrogel: Functionalized Small Molecule Microarray
Attention for Chapter 12: Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

patent
1 patent

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays
Chapter number 12
Book title
Small Molecule Microarrays
Published in
Methods in molecular biology, November 2016
DOI 10.1007/978-1-4939-6584-7_12
Pubmed ID
Book ISBNs
978-1-4939-6582-3, 978-1-4939-6584-7
Authors

Michele Tinti, Simona Panni, Gianni Cesareni, Tinti, Michele, Panni, Simona, Cesareni, Gianni

Editors

Mahesh Uttamchandani, Shao Q. Yao

Abstract

Cellular organization and response to internal and external stimuli are mediated by an intricate web of protein interactions. Some of these interactions are regulated by covalent posttranslational modifications such as phosphorylation and acetylation. These modifications can change the chemical nature of the interaction interfaces and modulate the binding affinity of the interacting partners. In signal transduction, the most frequent modification is reversible phosphorylation of tyrosine, serine or threonine residues. Protein phosphorylation may modulate the activity of enzymes by modifying their conformation, or regulate the formation of complexes by creating docking sites to recruit downstream effectors. Families of modular domains, such as SH2, PTB, and 14-3-3, act as "readers" of the modification event. Specificity between closely related domains of the same family is mediated by the chemical properties of the domain binding surface that, aside from offering a hydrophilic pocket for the phosphorylated residue, shows preference for specific sequences. Although the protein structure and the cell context are also important to ensure specificity, the amino acid sequence flanking the phosphorylation site defines the accuracy of the recognition process, and it is therefore essential to define the binding specificity of phosphopeptide binding domains in order to understand and to infer the interaction web mediated by phosphopeptides. Methods commonly used to discover new interactions (such as yeast two hybrid and phage display) are not suited to study interactions with phosphorylated proteins. On the other hand, peptide arrays are a powerful approach to precisely identify the binding preference of phosphopeptide recognition domains. Here we describe a detailed protocol to assemble arrays of hundreds to thousands phospho-peptides and to screen them with any modular domain of interest.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 25%
Student > Ph. D. Student 1 25%
Researcher 1 25%
Unknown 1 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 25%
Agricultural and Biological Sciences 1 25%
Physics and Astronomy 1 25%
Unknown 1 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2019.
All research outputs
#7,512,050
of 22,947,506 outputs
Outputs from Methods in molecular biology
#2,332
of 13,131 outputs
Outputs of similar age
#137,728
of 415,683 outputs
Outputs of similar age from Methods in molecular biology
#241
of 1,037 outputs
Altmetric has tracked 22,947,506 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,131 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,683 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 1,037 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.