↓ Skip to main content

Proteomics

Overview of attention for book
Cover of 'Proteomics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Robust Protocol for Protein Extraction and Digestion
  3. Altmetric Badge
    Chapter 2 Improving Proteome Coverage and Sample Recovery with Enhanced FASP (eFASP) for Quantitative Proteomic Experiments
  4. Altmetric Badge
    Chapter 3 Proteome Characterization of a Chromatin Locus Using the Proteomics of Isolated Chromatin Segments Approach
  5. Altmetric Badge
    Chapter 4 Profiling Cell Lines Nuclear Sub-proteome
  6. Altmetric Badge
    Chapter 5 Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography
  7. Altmetric Badge
    Chapter 6 Full Membrane Protein Coverage Digestion and Quantitative Bottom-Up Mass Spectrometry Proteomics
  8. Altmetric Badge
    Chapter 7 Hydrophilic Strong Anion Exchange (hSAX) Chromatography Enables Deep Fractionation of Tissue Proteomes
  9. Altmetric Badge
    Chapter 8 High pH Reversed-Phase Micro-Columns for Simple, Sensitive, and Efficient Fractionation of Proteome and (TMT labeled) Phosphoproteome Digests
  10. Altmetric Badge
    Chapter 9 Multi-Lectin Affinity Chromatography for Separation, Identification, and Quantitation of Intact Protein Glycoforms in Complex Biological Mixtures
  11. Altmetric Badge
    Chapter 10 Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry
  12. Altmetric Badge
    Chapter 11 LUMIER: A Discovery Tool for Mammalian Protein Interaction Networks
  13. Altmetric Badge
    Chapter 12 Dual-Color, Multiplex Analysis of Protein Microarrays for Precision Medicine
  14. Altmetric Badge
    Chapter 13 Quantitative Proteomics Using SILAC
  15. Altmetric Badge
    Chapter 14 Relative Protein Quantification Using Tandem Mass Tag Mass Spectrometry
  16. Altmetric Badge
    Chapter 15 Pathway-Informed Discovery and Targeted Proteomic Workflows Using Mass Spectrometry
  17. Altmetric Badge
    Chapter 16 Generation of High-Quality SWATH® Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF® Mass Spectrometers
  18. Altmetric Badge
    Chapter 17 Annotating Mutational Effects on Proteins and Protein Interactions: Designing Novel and Revisiting Existing Protocols
  19. Altmetric Badge
    Chapter 18 Protein Micropatterning Assay: Quantitative Analysis of Protein–Protein Interactions
  20. Altmetric Badge
    Chapter 19 Designing Successful Proteomics Experiments
  21. Altmetric Badge
    Chapter 20 Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms
  22. Altmetric Badge
    Chapter 21 Virtualization of Legacy Instrumentation Control Computers for Improved Reliability, Operational Life, and Management
  23. Altmetric Badge
    Chapter 22 Statistical Assessment of QC Metrics on Raw LC-MS/MS Data
  24. Altmetric Badge
    Chapter 23 Data Conversion with ProteoWizard msConvert
Attention for Chapter 21: Virtualization of Legacy Instrumentation Control Computers for Improved Reliability, Operational Life, and Management
Altmetric Badge

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Virtualization of Legacy Instrumentation Control Computers for Improved Reliability, Operational Life, and Management
Chapter number 21
Book title
Proteomics
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6747-6_21
Pubmed ID
Book ISBNs
978-1-4939-6745-2, 978-1-4939-6747-6
Authors

Jonathan E. Katz

Editors

Lucio Comai, Jonathan E. Katz, Parag Mallick

Abstract

Laboratories tend to be amenable environments for long-term reliable operation of scientific measurement equipment. Indeed, it is not uncommon to find equipment 5, 10, or even 20+ years old still being routinely used in labs. Unfortunately, the Achilles heel for many of these devices is the control/data acquisition computer. Often these computers run older operating systems (e.g., Windows XP) and, while they might only use standard network, USB or serial ports, they require proprietary software to be installed. Even if the original installation disks can be found, it is a burdensome process to reinstall and is fraught with "gotchas" that can derail the process-lost license keys, incompatible hardware, forgotten configuration settings, etc. If you have running legacy instrumentation, the computer is the ticking time bomb waiting to put a halt to your operation.In this chapter, I describe how to virtualize your currently running control computer. This virtualized computer "image" is easy to maintain, easy to back up and easy to redeploy. I have used this multiple times in my own lab to greatly improve the robustness of my legacy devices.After completing the steps in this chapter, you will have your original control computer as well as a virtual instance of that computer with all the software installed ready to control your hardware should your original computer ever be decommissioned.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 67%
Student > Bachelor 1 33%
Readers by discipline Count As %
Computer Science 2 67%
Social Sciences 1 33%