↓ Skip to main content

Argonaute Proteins

Overview of attention for book
Cover of 'Argonaute Proteins'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing
  3. Altmetric Badge
    Chapter 2 Quantification of miRNAs Co-Immunoprecipitated with Argonaute Proteins Using SYBR Green-Based qRT-PCR
  4. Altmetric Badge
    Chapter 3 Gateway to Understanding Argonaute Loading of Single-Stranded RNAs: Preparation of Deep Sequencing Libraries with In Vitro Loading Samples
  5. Altmetric Badge
    Chapter 4 Dumbbell-PCR for Discriminative Quantification of a Small RNA Variant
  6. Altmetric Badge
    Chapter 5 MicroRNA Detection by Whole-Mount In Situ Hybridization in C. elegans
  7. Altmetric Badge
    Chapter 6 cCLIP-Seq: Retrieval of Chimeric Reads from HITS-CLIP (CLIP-Seq) Libraries
  8. Altmetric Badge
    Chapter 7 Kinetic Analysis of Small Silencing RNA Production by Human and Drosophila Dicer Enzymes In Vitro
  9. Altmetric Badge
    Chapter 8 Nucleic Acid-Binding Assay of Argonaute Protein Using Fluorescence Polarization
  10. Altmetric Badge
    Chapter 9 Reconstitution of RNA Interference Machinery
  11. Altmetric Badge
    Chapter 10 Single-Molecule Analysis for RISC Assembly and Target Cleavage
  12. Altmetric Badge
    Chapter 11 Profiling Open Chromatin Structure in the Ovarian Somatic Cells Using ATAC-seq
  13. Altmetric Badge
    Chapter 12 Assessing miR-451 Activity and Its Role in Erythropoiesis
  14. Altmetric Badge
    Chapter 13 Functional Analysis of MicroRNAs in Neurogenesis During Mouse Cortical Development
  15. Altmetric Badge
    Chapter 14 Cellular Approaches in Investigating Argonaute2-Dependent RNA Silencing
  16. Altmetric Badge
    Chapter 15 Genomic Tagging of AGO1 Using CRISPR/Cas9-Mediated Homologous Recombination
  17. Altmetric Badge
    Chapter 16 Accurate Profiling and Quantification of tRNA Fragments from RNA-Seq Data: A Vade Mecum for MINTmap
Attention for Chapter 6: cCLIP-Seq: Retrieval of Chimeric Reads from HITS-CLIP (CLIP-Seq) Libraries
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
cCLIP-Seq: Retrieval of Chimeric Reads from HITS-CLIP (CLIP-Seq) Libraries
Chapter number 6
Book title
Argonaute Proteins
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7339-2_6
Pubmed ID
Book ISBNs
978-1-4939-7338-5, 978-1-4939-7339-2
Authors

Panagiotis Alexiou, Manolis Maragkakis, Zissimos Mourelatos, Anastassios Vourekas

Abstract

HITS-CLIP (High-Throughput Sequencing after in vivo Crosslinking and Immunoprecipitation, CLIP-Seq) libraries contain fragments of the RNA sequences bound in vivo by an RNA binding protein (RBP). Such fragments, especially if they represent RNA duplexes bound in vivo by the RBP, can occasionally be ligated together to form chimeric CLIP tags. Chimeric CLIP tags from Argonaute CLIP libraries can provide the exact base pairing profiles of small RNAs with their target RNA sequences, thus solving a critical problem in the field of post-transcriptional regulation. We recently reported an analysis of chimeric reads from the Drosophila Piwi protein Aubergine, which revealed a novel mechanism for mRNA entrapment within germ RNP granules. We term this novel approach chimeric CLIP (cCLIP) and present here the main steps that a researcher can take after the acquisition of the deep sequencing data, for the identification of candidate chimeric reads in Piwi CLIP libraries. Extending the scope beyond small-RNA binding proteins, we believe that cCLIP can be utilized to elucidate the in vivo functions of RNA-binding proteins in general, and especially those that modulate RNA secondary structures. We, therefore, also describe aspects of the generalized chimeric read identification problem, which can find use in the analysis of the CLIP libraries of any RNA-binding protein.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 30%
Student > Ph. D. Student 4 20%
Student > Doctoral Student 1 5%
Student > Master 1 5%
Other 1 5%
Other 0 0%
Unknown 7 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 30%
Biochemistry, Genetics and Molecular Biology 3 15%
Computer Science 2 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Neuroscience 1 5%
Other 0 0%
Unknown 7 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 November 2017.
All research outputs
#18,575,277
of 23,007,053 outputs
Outputs from Methods in molecular biology
#7,962
of 13,157 outputs
Outputs of similar age
#330,471
of 442,275 outputs
Outputs of similar age from Methods in molecular biology
#950
of 1,498 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,157 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,275 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.