↓ Skip to main content

mRNA Decay

Overview of attention for book
Cover of 'mRNA Decay'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 5′-Bromouridine IP Chase (BRIC)-Seq to Determine RNA Half-Lives
  3. Altmetric Badge
    Chapter 2 Determining mRNA Decay Rates Using RNA Approach to Equilibrium Sequencing (RATE-Seq)
  4. Altmetric Badge
    Chapter 3 Metabolic Labeling of Newly Synthesized RNA with 4sU to in Parallel Assess RNA Transcription and Decay
  5. Altmetric Badge
    Chapter 4 Measuring mRNA Decay in Budding Yeast Using Single Molecule FISH
  6. Altmetric Badge
    Chapter 5 PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins
  7. Altmetric Badge
    Chapter 6 Characterizing mRNA Sequence Motifs in the 3′-UTR Using GFP Reporter Constructs
  8. Altmetric Badge
    Chapter 7 iCLIP of the PIWI Protein Aubergine in Drosophila Embryos
  9. Altmetric Badge
    Chapter 8 Integration of ENCODE RNAseq and eCLIP Data Sets
  10. Altmetric Badge
    Chapter 9 Identifying miRNA Targets Using AGO-RIPseq
  11. Altmetric Badge
    Chapter 10 Integrated Analysis of miRNA and mRNA Expression Profiles to Identify miRNA Targets
  12. Altmetric Badge
    Chapter 11 Identifying RISC Components Using Ago2 Immunoprecipitation and Mass Spectrometry
  13. Altmetric Badge
    Chapter 12 Using Tet-Off Cells and RNAi Knockdown to Assay mRNA Decay
  14. Altmetric Badge
    Chapter 13 Identifying Cellular Nonsense-Mediated mRNA Decay (NMD) Targets: Immunoprecipitation of Phosphorylated UPF1 Followed by RNA Sequencing (p-UPF1 RIP−Seq)
  15. Altmetric Badge
    Chapter 14 Generation of Cell Lines Stably Expressing a Fluorescent Reporter of Nonsense-Mediated mRNA Decay Activity
  16. Altmetric Badge
    Chapter 15 Reactivation Assay to Identify Direct Targets of the Nonsense-Mediated mRNA Decay Pathway in Drosophila
  17. Altmetric Badge
    Chapter 16 Studying Nonsense-Mediated mRNA Decay in Mammalian Cells Using a Multicolored Bioluminescence-Based Reporter System
Attention for Chapter 4: Measuring mRNA Decay in Budding Yeast Using Single Molecule FISH
Altmetric Badge

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Measuring mRNA Decay in Budding Yeast Using Single Molecule FISH
Chapter number 4
Book title
mRNA Decay
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7540-2_4
Pubmed ID
Book ISBNs
978-1-4939-7539-6, 978-1-4939-7540-2
Authors

Tatjana Trcek, Samir Rahman, Daniel Zenklusen

Abstract

Cellular mRNA levels are determined by the rates of mRNA synthesis and mRNA decay. Typically, mRNA degradation kinetics are measured on a population of cells that are either chemically treated or genetically engineered to inhibit transcription. However, these manipulations can affect the mRNA decay process itself by inhibiting regulatory mechanisms that govern mRNA degradation, especially if they occur on short time-scales. Recently, single molecule fluorescent in situ hybridization (smFISH) approaches have been implemented to quantify mRNA decay rates in single, unperturbed cells. Here, we provide a step-by-step protocol that allows quantification of mRNA decay in single Saccharomyces cerevisiae using smFISH. Our approach relies on fluorescent labeling of single cytoplasmic mRNAs and nascent mRNAs found at active sites of transcription, coupled with mathematical modeling to derive mRNA half-lives. Commercially available, single-stranded smFISH DNA oligonucleotides (smFISH probes) are used to fluorescently label mRNAs followed by the quantification of cellular and nascent mRNAs using freely available spot detection algorithms. Our method enables quantification of mRNA decay of any mRNA in single, unperturbed yeast cells and can be implemented to quantify mRNA turnover in a variety of cell types as well as tissues.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 26%
Researcher 3 16%
Student > Master 3 16%
Professor > Associate Professor 2 11%
Student > Bachelor 1 5%
Other 4 21%
Unknown 1 5%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 53%
Agricultural and Biological Sciences 4 21%
Business, Management and Accounting 1 5%
Immunology and Microbiology 1 5%
Medicine and Dentistry 1 5%
Other 0 0%
Unknown 2 11%