↓ Skip to main content

Chromatin Protocols

Overview of attention for book
Cover of 'Chromatin Protocols'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Beads-on-a-String on a Bead: Reconstitution and Analysis of Chromatin on a Solid Support.
  3. Altmetric Badge
    Chapter 2 Preparation and analysis of positioned mononucleosomes.
  4. Altmetric Badge
    Chapter 3 Chromatin imaging with time-lapse atomic force microscopy.
  5. Altmetric Badge
    Chapter 4 Isolation of Specific Genomic Regions and Identification of Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using CRISPR.
  6. Altmetric Badge
    Chapter 5 Drug-Induced Premature Chromosome Condensation (PCC) Protocols: Cytogenetic Approaches in Mitotic Chromosome and Interphase Chromatin.
  7. Altmetric Badge
    Chapter 6 Analysis of genomic aberrations using comparative genomic hybridization of metaphase chromosomes.
  8. Altmetric Badge
    Chapter 7 Histone Deacetylase Activity Assay
  9. Altmetric Badge
    Chapter 8 In vitro histone demethylase assays.
  10. Altmetric Badge
    Chapter 9 Integrated DNA methylation and chromatin structural analysis at single-molecule resolution.
  11. Altmetric Badge
    Chapter 10 Determination of DNA Methylation Levels Using Illumina HumanMethylation450 BeadChips.
  12. Altmetric Badge
    Chapter 11 Investigation of genomic methylation status using methylation-specific and bisulfite sequencing polymerase chain reaction.
  13. Altmetric Badge
    Chapter 12 In vitro and in vivo assays for studying histone ubiquitination and deubiquitination.
  14. Altmetric Badge
    Chapter 13 Immunostaining analysis of tissue cultured cells and tissue sections using phospho-histone h3 (serine 10) antibody.
  15. Altmetric Badge
    Chapter 14 Identification and characterization of nonhistone chromatin proteins: human positive coactivator 4 as a candidate.
  16. Altmetric Badge
    Chapter 15 Methods to study transcription-coupled repair in chromatin.
  17. Altmetric Badge
    Chapter 16 Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.
  18. Altmetric Badge
    Chapter 17 Non-radioactive Assay Methods for the Assessment of Telomerase Activity and Telomere Length
  19. Altmetric Badge
    Chapter 18 Detecting ATM-Dependent Chromatin Modification in DNA Damage Response.
  20. Altmetric Badge
    Chapter 19 Imaging Local Deposition of Newly Synthesized Histones in UVC-Damaged Chromatin.
  21. Altmetric Badge
    Chapter 20 In vitro replication assay with Mammalian cell extracts.
  22. Altmetric Badge
    Chapter 21 Fluorescent In Situ Hybridization on Comets: FISH Comet.
  23. Altmetric Badge
    Chapter 22 Methods to study histone chaperone function in nucleosome assembly and chromatin transcription.
  24. Altmetric Badge
    Chapter 23 Preparation of Mononucleosomal Templates for Analysis of Transcription with RNA Polymerase Using spFRET.
  25. Altmetric Badge
    Chapter 24 Transcriptome-Wide Identification of In Vivo Interactions Between RNAs and RNA-Binding Proteins by RIP and PAR-CLIP Assays.
  26. Altmetric Badge
    Chapter 25 Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo.
  27. Altmetric Badge
    Chapter 26 ChIP on Chip and ChIP-Seq Assays: Genome-Wide Analysis of Transcription Factor Binding and Histone Modifications.
  28. Altmetric Badge
    Chapter 27 ChIP-on-Chip Analysis Methods for Affymetrix Tiling Arrays.
Attention for Chapter 16: Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.
Chapter number 16
Book title
Chromatin Protocols
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2474-5_16
Pubmed ID
Book ISBNs
978-1-4939-2473-8, 978-1-4939-2474-5
Authors

Borysov, Sergiy, Bryant, Victoria L, Alexandrow, Mark G, Sergiy Borysov, Victoria L. Bryant, Mark G. Alexandrow, Bryant, Victoria L., Alexandrow, Mark G.

Abstract

Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze mechanisms underlying DNA replication associated chromatin accessibility, this unique and powerful experimental system has the propensity to be a valuable tool for understanding chromatin remodeling mechanisms orchestrated by other cellular processes such as DNA repair, recombination, mitotic chromosome condensation, or other chromosome dynamics involving chromatin alterations and accessibility.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 33%
Unknown 2 67%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 33%
Unknown 2 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2015.
All research outputs
#20,273,512
of 22,805,349 outputs
Outputs from Methods in molecular biology
#9,905
of 13,120 outputs
Outputs of similar age
#295,802
of 353,087 outputs
Outputs of similar age from Methods in molecular biology
#635
of 996 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,120 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,087 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 996 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.