↓ Skip to main content

Membrane Potential Imaging in the Nervous System and Heart

Overview of attention for book
Cover of 'Membrane Potential Imaging in the Nervous System and Heart'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Historical Overview and General Methods of Membrane Potential Imaging
  3. Altmetric Badge
    Chapter 2 Design and Use of Organic Voltage Sensitive Dyes.
  4. Altmetric Badge
    Chapter 3 Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines.
  5. Altmetric Badge
    Chapter 4 Combining Membrane Potential Imaging with Other Optical Techniques.
  6. Altmetric Badge
    Chapter 5 Monitoring Spiking Activity of Many Individual Neurons in Invertebrate Ganglia
  7. Altmetric Badge
    Chapter 6 Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.
  8. Altmetric Badge
    Chapter 7 Monitoring Population Membrane Potential Signals from Neocortex
  9. Altmetric Badge
    Chapter 8 Voltage Imaging in the Study of Hippocampal Circuit Function and Plasticity.
  10. Altmetric Badge
    Chapter 9 Monitoring Population Membrane Potential Signals During Development of the Vertebrate Nervous System.
  11. Altmetric Badge
    Chapter 10 Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo.
  12. Altmetric Badge
    Chapter 11 Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals
  13. Altmetric Badge
    Chapter 12 Optical Imaging of Cardiac Action Potential.
  14. Altmetric Badge
    Chapter 13 Optical Mapping of Ventricular Fibrillation Dynamics.
  15. Altmetric Badge
    Chapter 14 Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis
  16. Altmetric Badge
    Chapter 15 Biophotonic Modelling of Cardiac Optical Imaging
  17. Altmetric Badge
    Chapter 16 Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity
  18. Altmetric Badge
    Chapter 17 Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared
  19. Altmetric Badge
    Chapter 18 Random-Access Multiphoton Microscopy for Fast Three-Dimensional Imaging
  20. Altmetric Badge
    Chapter 19 Second Harmonic Imaging of Membrane Potential
  21. Altmetric Badge
    Chapter 20 Genetically Encoded Protein Sensors of Membrane Potential.
Attention for Chapter 7: Monitoring Population Membrane Potential Signals from Neocortex
Altmetric Badge

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Monitoring Population Membrane Potential Signals from Neocortex
Chapter number 7
Book title
Membrane Potential Imaging in the Nervous System and Heart
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-17641-3_7
Pubmed ID
Book ISBNs
978-3-31-917640-6, 978-3-31-917641-3
Authors

Jianmin Liang, Weifeng Xu, Xinling Geng, Jian-young Wu, Liang, Jianmin, Xu, Weifeng, Geng, Xinling, Wu, Jian-young

Abstract

Voltage-sensitive dyes (VSDs) and optical imaging are useful tools for studying spatiotemporal patterns of population neuronal activity in cortex. Because fast VSDs respond to membrane potential changes with microsecond temporal resolution, these are better suited than calcium indicators for recording rapid neural signals. Here we describe methods for using a 464 element photodiode array and fast VSDs to record signals ranging from large scale network activity in brain slices and in vivo mammalian preparations with sensitivity comparable to local field potential (LFP) recordings. With careful control of dye bleaching and phototoxicity, long recording times can be achieved. Absorption dyes have less photo-toxicity than fluorescent dyes. In brain slices, the total recording time in each slice can be 1,000-2,000 s, which can be divided into hundreds of short recording trials over several hours. In intact brains when fluorescent dyes are used, reduced light intensity can also increase recording time. In this chapter, we will discuss technical details for the methods to achieve reliable VSD imaging with high sensitivity and long recording time.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 24%
Student > Ph. D. Student 4 24%
Lecturer 2 12%
Student > Master 2 12%
Professor > Associate Professor 1 6%
Other 0 0%
Unknown 4 24%
Readers by discipline Count As %
Neuroscience 5 29%
Medicine and Dentistry 3 18%
Biochemistry, Genetics and Molecular Biology 1 6%
Physics and Astronomy 1 6%
Agricultural and Biological Sciences 1 6%
Other 2 12%
Unknown 4 24%