↓ Skip to main content

Membrane Potential Imaging in the Nervous System and Heart

Overview of attention for book
Cover of 'Membrane Potential Imaging in the Nervous System and Heart'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Historical Overview and General Methods of Membrane Potential Imaging
  3. Altmetric Badge
    Chapter 2 Design and Use of Organic Voltage Sensitive Dyes.
  4. Altmetric Badge
    Chapter 3 Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines.
  5. Altmetric Badge
    Chapter 4 Combining Membrane Potential Imaging with Other Optical Techniques.
  6. Altmetric Badge
    Chapter 5 Monitoring Spiking Activity of Many Individual Neurons in Invertebrate Ganglia
  7. Altmetric Badge
    Chapter 6 Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.
  8. Altmetric Badge
    Chapter 7 Monitoring Population Membrane Potential Signals from Neocortex
  9. Altmetric Badge
    Chapter 8 Voltage Imaging in the Study of Hippocampal Circuit Function and Plasticity.
  10. Altmetric Badge
    Chapter 9 Monitoring Population Membrane Potential Signals During Development of the Vertebrate Nervous System.
  11. Altmetric Badge
    Chapter 10 Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo.
  12. Altmetric Badge
    Chapter 11 Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals
  13. Altmetric Badge
    Chapter 12 Optical Imaging of Cardiac Action Potential.
  14. Altmetric Badge
    Chapter 13 Optical Mapping of Ventricular Fibrillation Dynamics.
  15. Altmetric Badge
    Chapter 14 Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis
  16. Altmetric Badge
    Chapter 15 Biophotonic Modelling of Cardiac Optical Imaging
  17. Altmetric Badge
    Chapter 16 Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity
  18. Altmetric Badge
    Chapter 17 Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared
  19. Altmetric Badge
    Chapter 18 Random-Access Multiphoton Microscopy for Fast Three-Dimensional Imaging
  20. Altmetric Badge
    Chapter 19 Second Harmonic Imaging of Membrane Potential
  21. Altmetric Badge
    Chapter 20 Genetically Encoded Protein Sensors of Membrane Potential.
Attention for Chapter 6: Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.
Chapter number 6
Book title
Membrane Potential Imaging in the Nervous System and Heart
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-17641-3_6
Pubmed ID
Book ISBNs
978-3-31-917640-6, 978-3-31-917641-3
Authors

Briggman, Kevin L, Kristan, William B, González, Jesús E, Kleinfeld, David, Tsien, Roger Y, Kevin L. Briggman, William B. Kristan, Jesús E. González, David Kleinfeld, Roger Y. Tsien, Briggman, Kevin L., Kristan, William B., González, Jesús E., Tsien, Roger Y.

Abstract

Pairs of membrane-associated molecules exhibiting fluorescence resonance energy transfer (FRET) provide a sensitive technique to measure changes in a cell's membrane potential. One of the FRET pair binds to one surface of the membrane and the other is a mobile ion that dissolves in the lipid bilayer. The voltage-related signal can be measured as a change in the fluorescence of either the donor or acceptor molecules, but measuring their ratio provides the largest and most noise-free signal. This technology has been used in a variety of ways; three are documented in this chapter: (1) high throughput drug screening, (2) monitoring the activity of many neurons simultaneously during a behavior, and (3) finding synaptic targets of a stimulated neuron. In addition, we provide protocols for using the dyes on both cultured neurons and leech ganglia. We also give an updated description of the mathematical basis for measuring the coherence between electrical and optical signals. Future improvements of this technique include faster and more sensitive dyes that bleach more slowly, and the expression of one of the FRET pair genetically.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 27%
Researcher 6 18%
Student > Doctoral Student 2 6%
Student > Bachelor 2 6%
Other 2 6%
Other 4 12%
Unknown 8 24%
Readers by discipline Count As %
Neuroscience 6 18%
Agricultural and Biological Sciences 5 15%
Engineering 4 12%
Biochemistry, Genetics and Molecular Biology 3 9%
Physics and Astronomy 2 6%
Other 4 12%
Unknown 9 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 August 2015.
All research outputs
#15,340,815
of 22,818,766 outputs
Outputs from Advances in experimental medicine and biology
#2,502
of 4,950 outputs
Outputs of similar age
#208,994
of 353,119 outputs
Outputs of similar age from Advances in experimental medicine and biology
#119
of 272 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,950 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,119 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.