↓ Skip to main content

Membrane Potential Imaging in the Nervous System and Heart

Overview of attention for book
Cover of 'Membrane Potential Imaging in the Nervous System and Heart'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Historical Overview and General Methods of Membrane Potential Imaging
  3. Altmetric Badge
    Chapter 2 Design and Use of Organic Voltage Sensitive Dyes.
  4. Altmetric Badge
    Chapter 3 Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines.
  5. Altmetric Badge
    Chapter 4 Combining Membrane Potential Imaging with Other Optical Techniques.
  6. Altmetric Badge
    Chapter 5 Monitoring Spiking Activity of Many Individual Neurons in Invertebrate Ganglia
  7. Altmetric Badge
    Chapter 6 Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.
  8. Altmetric Badge
    Chapter 7 Monitoring Population Membrane Potential Signals from Neocortex
  9. Altmetric Badge
    Chapter 8 Voltage Imaging in the Study of Hippocampal Circuit Function and Plasticity.
  10. Altmetric Badge
    Chapter 9 Monitoring Population Membrane Potential Signals During Development of the Vertebrate Nervous System.
  11. Altmetric Badge
    Chapter 10 Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo.
  12. Altmetric Badge
    Chapter 11 Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals
  13. Altmetric Badge
    Chapter 12 Optical Imaging of Cardiac Action Potential.
  14. Altmetric Badge
    Chapter 13 Optical Mapping of Ventricular Fibrillation Dynamics.
  15. Altmetric Badge
    Chapter 14 Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis
  16. Altmetric Badge
    Chapter 15 Biophotonic Modelling of Cardiac Optical Imaging
  17. Altmetric Badge
    Chapter 16 Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity
  18. Altmetric Badge
    Chapter 17 Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared
  19. Altmetric Badge
    Chapter 18 Random-Access Multiphoton Microscopy for Fast Three-Dimensional Imaging
  20. Altmetric Badge
    Chapter 19 Second Harmonic Imaging of Membrane Potential
  21. Altmetric Badge
    Chapter 20 Genetically Encoded Protein Sensors of Membrane Potential.
Attention for Chapter 13: Optical Mapping of Ventricular Fibrillation Dynamics.
Altmetric Badge

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Optical Mapping of Ventricular Fibrillation Dynamics.
Chapter number 13
Book title
Membrane Potential Imaging in the Nervous System and Heart
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-17641-3_13
Pubmed ID
Book ISBNs
978-3-31-917640-6, 978-3-31-917641-3
Authors

Park, Sarah A, Gray, Richard A, Sarah A. Park, Richard A. Gray, Park, Sarah A., Gray, Richard A.

Abstract

There is very limited information regarding the dynamic patterns of the electrical activity during ventricular fibrillation (VF) in humans. Most of the data used to generate and test hypotheses regarding the mechanisms of VF come from animal models and computer simulations and the quantification of VF patterns is non-trivial. Many of the experimental recordings of the dynamic spatial patterns of VF have been obtained from mammals using "optical mapping" or "video imaging" technology in which "phase maps" are derived from high-resolution transmembrane recordings from the heart surface. The surface manifestation of the unstable reentrant waves sustaining VF can be identified as "phase singularities" and their number and location provide one measure of VF complexity. After providing a brief history of optical mapping of VF, we compare and contrast a quantitative analysis of VF patterns from the heart surface for four different animal models, hence providing physiological insight into the variety of VF dynamics among species. We found that in all four animal models the action potential duration restitution slope was actually negative during VF and that the spatial dispersion of electrophysiological parameters were not different during the first second of VF compared to pacing immediately before VF initiation. Surprisingly, our results suggest that APD restitution and spatial dispersion may not be essential causes of VF dynamics. Analyses of electrophysiological quantities in the four animal models are consistent with the idea that VF is essentially a two-dimensional phenomenon in small rabbit hearts whose size are near the boundary of the "critical mass" required to sustain VF, while VF in large pig hearts is three-dimensional and exhibits the maximal theoretical phase singularity density, and thus will not terminate spontaneously.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 21%
Researcher 4 21%
Student > Ph. D. Student 3 16%
Student > Doctoral Student 2 11%
Student > Bachelor 1 5%
Other 1 5%
Unknown 4 21%
Readers by discipline Count As %
Engineering 5 26%
Medicine and Dentistry 3 16%
Biochemistry, Genetics and Molecular Biology 2 11%
Mathematics 1 5%
Philosophy 1 5%
Other 1 5%
Unknown 6 32%