↓ Skip to main content

ADP-ribosylation and NAD+ Utilizing Enzymes

Overview of attention for book
Cover of 'ADP-ribosylation and NAD+ Utilizing Enzymes'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Vitamin B3 in Health and Disease: Toward the Second Century of Discovery
  3. Altmetric Badge
    Chapter 2 Monitoring Poly(ADP-Ribosyl)ation in Response to DNA Damage in Live Cells Using Fluorescently Tagged Macrodomains
  4. Altmetric Badge
    Chapter 3 In Vitro Techniques for ADP-Ribosylated Substrate Identification
  5. Altmetric Badge
    Chapter 4 Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8
  6. Altmetric Badge
    Chapter 5 Biochemical and Biophysical Assays of PAR-WWE Domain Interactions and Production of iso-ADPr for PAR-Binding Analysis
  7. Altmetric Badge
    Chapter 6 Assays for NAD+-Dependent Reactions and NAD+ Metabolites
  8. Altmetric Badge
    Chapter 7 Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro
  9. Altmetric Badge
    Chapter 8 Methods to Study TCDD-Inducible Poly-ADP-Ribose Polymerase (TIPARP) Mono-ADP-Ribosyltransferase Activity
  10. Altmetric Badge
    Chapter 9 Dictyostelium as a Model to Assess Site-Specific ADP-Ribosylation Events
  11. Altmetric Badge
    Chapter 10 Mono-ADP-Ribosylation Catalyzed by Arginine-Specific ADP-Ribosyltransferases
  12. Altmetric Badge
    Chapter 11 Monitoring Expression and Enzyme Activity of Ecto-ARTCs
  13. Altmetric Badge
    Chapter 12 ADP-Ribosyl-Acceptor Hydrolase Activities Catalyzed by the ARH Family of Proteins
  14. Altmetric Badge
    Chapter 13 Mono-ADP-Ribosylhydrolase Assays
  15. Altmetric Badge
    Chapter 14 Hydrolysis of ADP-Ribosylation by Macrodomains
  16. Altmetric Badge
    Chapter 15 HPLC-Based Enzyme Assays for Sirtuins
  17. Altmetric Badge
    Chapter 16 Small-Molecule Screening Assay for Mono-ADP-Ribosyltransferases
  18. Altmetric Badge
    Chapter 17 A Simple, Sensitive, and Generalizable Plate Assay for Screening PARP Inhibitors
  19. Altmetric Badge
    Chapter 18 Nonlocalized Searching of HCD Data for Fast and Sensitive Identification of ADP-Ribosylated Peptides
  20. Altmetric Badge
    Chapter 19 Quantitative Determination of MAR Hydrolase Residue Specificity In Vitro by Tandem Mass Spectrometry
  21. Altmetric Badge
    Chapter 20 Detection of ADP-Ribosylating Bacterial Toxins
  22. Altmetric Badge
    Chapter 21 Preparation of Recombinant Alphaviruses for Functional Studies of ADP-Ribosylation
  23. Altmetric Badge
    Chapter 22 Monitoring the Sensitivity of T Cell Populations Towards NAD+ Released During Cell Preparation
  24. Altmetric Badge
    Chapter 23 Identifying Target RNAs of PARPs
  25. Altmetric Badge
    Chapter 24 ADPr-Peptide Synthesis
  26. Altmetric Badge
    Chapter 25 Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP
  27. Altmetric Badge
    Chapter 26 Methods for Using a Genetically Encoded Fluorescent Biosensor to Monitor Nuclear NAD +
Attention for Chapter 9: Dictyostelium as a Model to Assess Site-Specific ADP-Ribosylation Events
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Dictyostelium as a Model to Assess Site-Specific ADP-Ribosylation Events
Chapter number 9
Book title
ADP-ribosylation and NAD+ Utilizing Enzymes
Published in
Methods in molecular biology, August 2018
DOI 10.1007/978-1-4939-8588-3_9
Pubmed ID
Book ISBNs
978-1-4939-8587-6, 978-1-4939-8588-3
Authors

Anna-Lena Kolb, Duen-Wei Hsu, Ana B. A. Wallis, Seiji Ura, Alina Rakhimova, Catherine J. Pears, Nicholas D. Lakin, Kolb, Anna-Lena, Hsu, Duen-Wei, Wallis, Ana B. A., Ura, Seiji, Rakhimova, Alina, Pears, Catherine J., Lakin, Nicholas D.

Abstract

The amoeba Dictyostelium discoideum is a single-cell organism that can undergo a simple developmental program, making it an excellent model to study the molecular mechanisms of cell motility, signal transduction, and cell-type differentiation. A variety of human genes that are absent or show limited conservation in other invertebrate models have been identified in this organism. This includes ADP-ribosyltransferases, also known as poly-ADP-ribose polymerases (PARPs), a family of proteins that catalyze the addition of single or poly-ADP-ribose moieties onto target proteins. The genetic tractability of Dictyostelium and its relatively simple genome structure makes it possible to disrupt PARP gene combinations, in addition to specific ADP-ribosylation sites at endogenous loci. Together, this makes Dictyostelium an attractive model to assess how ADP-ribosylation regulates a variety of cellular processes including DNA repair, transcription, and cell-type specification. Here we describe a range of techniques to study ADP-ribosylation in Dictyostelium, including analysis of ADP-ribosylation events in vitro and in vivo, in addition to approaches to assess the functional roles of this modification in vivo.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 1 50%
Student > Master 1 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 50%
Medicine and Dentistry 1 50%