↓ Skip to main content

ADP-ribosylation and NAD+ Utilizing Enzymes

Overview of attention for book
Cover of 'ADP-ribosylation and NAD+ Utilizing Enzymes'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Vitamin B3 in Health and Disease: Toward the Second Century of Discovery
  3. Altmetric Badge
    Chapter 2 Monitoring Poly(ADP-Ribosyl)ation in Response to DNA Damage in Live Cells Using Fluorescently Tagged Macrodomains
  4. Altmetric Badge
    Chapter 3 In Vitro Techniques for ADP-Ribosylated Substrate Identification
  5. Altmetric Badge
    Chapter 4 Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8
  6. Altmetric Badge
    Chapter 5 Biochemical and Biophysical Assays of PAR-WWE Domain Interactions and Production of iso-ADPr for PAR-Binding Analysis
  7. Altmetric Badge
    Chapter 6 Assays for NAD+-Dependent Reactions and NAD+ Metabolites
  8. Altmetric Badge
    Chapter 7 Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro
  9. Altmetric Badge
    Chapter 8 Methods to Study TCDD-Inducible Poly-ADP-Ribose Polymerase (TIPARP) Mono-ADP-Ribosyltransferase Activity
  10. Altmetric Badge
    Chapter 9 Dictyostelium as a Model to Assess Site-Specific ADP-Ribosylation Events
  11. Altmetric Badge
    Chapter 10 Mono-ADP-Ribosylation Catalyzed by Arginine-Specific ADP-Ribosyltransferases
  12. Altmetric Badge
    Chapter 11 Monitoring Expression and Enzyme Activity of Ecto-ARTCs
  13. Altmetric Badge
    Chapter 12 ADP-Ribosyl-Acceptor Hydrolase Activities Catalyzed by the ARH Family of Proteins
  14. Altmetric Badge
    Chapter 13 Mono-ADP-Ribosylhydrolase Assays
  15. Altmetric Badge
    Chapter 14 Hydrolysis of ADP-Ribosylation by Macrodomains
  16. Altmetric Badge
    Chapter 15 HPLC-Based Enzyme Assays for Sirtuins
  17. Altmetric Badge
    Chapter 16 Small-Molecule Screening Assay for Mono-ADP-Ribosyltransferases
  18. Altmetric Badge
    Chapter 17 A Simple, Sensitive, and Generalizable Plate Assay for Screening PARP Inhibitors
  19. Altmetric Badge
    Chapter 18 Nonlocalized Searching of HCD Data for Fast and Sensitive Identification of ADP-Ribosylated Peptides
  20. Altmetric Badge
    Chapter 19 Quantitative Determination of MAR Hydrolase Residue Specificity In Vitro by Tandem Mass Spectrometry
  21. Altmetric Badge
    Chapter 20 Detection of ADP-Ribosylating Bacterial Toxins
  22. Altmetric Badge
    Chapter 21 Preparation of Recombinant Alphaviruses for Functional Studies of ADP-Ribosylation
  23. Altmetric Badge
    Chapter 22 Monitoring the Sensitivity of T Cell Populations Towards NAD+ Released During Cell Preparation
  24. Altmetric Badge
    Chapter 23 Identifying Target RNAs of PARPs
  25. Altmetric Badge
    Chapter 24 ADPr-Peptide Synthesis
  26. Altmetric Badge
    Chapter 25 Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP
  27. Altmetric Badge
    Chapter 26 Methods for Using a Genetically Encoded Fluorescent Biosensor to Monitor Nuclear NAD +
Attention for Chapter 22: Monitoring the Sensitivity of T Cell Populations Towards NAD+ Released During Cell Preparation
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Monitoring the Sensitivity of T Cell Populations Towards NAD+ Released During Cell Preparation
Chapter number 22
Book title
ADP-ribosylation and NAD+ Utilizing Enzymes
Published in
Methods in molecular biology, August 2018
DOI 10.1007/978-1-4939-8588-3_22
Pubmed ID
Book ISBNs
978-1-4939-8587-6, 978-1-4939-8588-3
Authors

Björn Rissiek, Marco Lukowiak, Friedrich Haag, Tim Magnus, Friedrich Koch-Nolte, Rissiek, Björn, Lukowiak, Marco, Haag, Friedrich, Magnus, Tim, Koch-Nolte, Friedrich

Abstract

Mouse T cells express the toxin-related ecto-ADP-ribosyltransferase ARTC2 that catalyzes the posttranslational ADP-ribosylation of cell surface proteins by transferring the ADP-ribose group of its substrate nicotinamide adenine dinucleotide (NAD+) to arginine residues of its target proteins. One well known target of ARTC2 is the ATP-gated P2X7 ion channel. ADP-ribosylation of P2X7 induces gating of the channel, calcium influx, ecto-domain shedding, phosphatidylserine externalization, and finally cell death. Previous studies have shown that the ARTC2 substrate NAD+ is released during T cell preparation. Since P2X7 is differentially expressed among T cell subpopulations, preparation-related ADP-ribosylation has a strong impact on the vitality of T cells that express high levels of P2X7. With this chapter we provide a protocol to monitor the consequences of preparation-related P2X7 ADP-ribosylation on T cells using regulatory T cells as generic T cell subpopulation known to express high levels of P2X7. However, this protocol could be easily adapted to other T cell populations.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 18%
Other 1 9%
Professor 1 9%
Student > Doctoral Student 1 9%
Researcher 1 9%
Other 1 9%
Unknown 4 36%
Readers by discipline Count As %
Immunology and Microbiology 2 18%
Neuroscience 2 18%
Biochemistry, Genetics and Molecular Biology 1 9%
Medicine and Dentistry 1 9%
Veterinary Science and Veterinary Medicine 1 9%
Other 0 0%
Unknown 4 36%