↓ Skip to main content

Toll-Like Receptors

Overview of attention for book
Cover of 'Toll-Like Receptors'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Toll-Like Receptors: Ligands, Cell-Based Models, and Readouts for Receptor Action
  3. Altmetric Badge
    Chapter 2 Bioinformatic Analysis of Toll-Like Receptor Sequences and Structures.
  4. Altmetric Badge
    Chapter 3 Toll-Like Receptor Interactions Measured by Microscopic and Flow Cytometric FRET
  5. Altmetric Badge
    Chapter 4 Using Confocal Microscopy to Investigate Intracellular Trafficking of Toll-Like Receptors
  6. Altmetric Badge
    Chapter 5 Assessing the Inhibitory Activity of Oligonucleotides on TLR7 Sensing.
  7. Altmetric Badge
    Chapter 6 Methods for Delivering DNA to Intracellular Receptors
  8. Altmetric Badge
    Chapter 7 Detection of Interaction Between Toll-Like Receptors and Other Transmembrane Proteins by Co-immunoprecipitation Assay
  9. Altmetric Badge
    Chapter 8 Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity
  10. Altmetric Badge
    Chapter 9 Measuring Monomer-to-Filament Transition of MAVS as an In Vitro Activity Assay for RIG-I-Like Receptors
  11. Altmetric Badge
    Chapter 10 Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen
  12. Altmetric Badge
    Chapter 11 Simple Methods to Investigate MicroRNA Induction in Response to Toll-Like Receptors.
  13. Altmetric Badge
    Chapter 12 Determining the Function of Long Noncoding RNA in Innate Immunity.
  14. Altmetric Badge
    Chapter 13 Analysis of Post-transcriptional Gene Regulation of Nod-Like Receptors via the 3'UTR.
  15. Altmetric Badge
    Chapter 14 TLR Function in Murine CD4+ T Lymphocytes and Their Role in Inflammation
  16. Altmetric Badge
    Chapter 15 Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors.
  17. Altmetric Badge
    Chapter 16 Toll-Like Receptor-Dependent Immune Complex Activation of B Cells and Dendritic Cells.
  18. Altmetric Badge
    Chapter 17 Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XF(e)96 Extracellular Flux Analyzer.
  19. Altmetric Badge
    Chapter 18 Toll-Like Receptor Signalling and the Control of Intestinal Barrier Function
  20. Altmetric Badge
    Chapter 19 Understanding the Role of Cellular Molecular Clocks in Controlling the Innate Immune Response.
  21. Altmetric Badge
    Chapter 20 Methods to Investigate the Role of Toll-Like Receptors in Allergic Contact Dermatitis
  22. Altmetric Badge
    Chapter 21 Allergens and Activation of the Toll-Like Receptor Response.
  23. Altmetric Badge
    Chapter 22 Investigating the Role of Toll-Like Receptors in Models of Arthritis
  24. Altmetric Badge
    Chapter 23 Delineating the Role of Toll-Like Receptors in the Neuro-inflammation Model EAE.
  25. Altmetric Badge
    Chapter 24 The Use of MiRNA Antagonists in the Alleviation of Inflammatory Disorders.
  26. Altmetric Badge
    Chapter 25 Investigating the Role of Toll-Like Receptors in Mouse Models of Gastric Cancer
Attention for Chapter 13: Analysis of Post-transcriptional Gene Regulation of Nod-Like Receptors via the 3'UTR.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of Post-transcriptional Gene Regulation of Nod-Like Receptors via the 3'UTR.
Chapter number 13
Book title
Toll-Like Receptors
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3335-8_13
Pubmed ID
Book ISBNs
978-1-4939-3333-4, 978-1-4939-3335-8
Authors

Haneklaus, Moritz, Moritz Haneklaus

Abstract

Innate immune signaling is the front line of defense against pathogens, leading to an appropriate response of immune cells upon activation of their pattern recognition receptors (PRRs) by microbial products, such as Toll-like receptors (TLRs). Apart from transcriptional control, gene expression in the innate immune system is also highly regulated at the post-transcriptional level. miRNA or RNA-binding protein can bind to the 3' untranslated region (UTR) of target mRNAs and affect their mRNA stability and translation efficiency, which ultimately affects the amount of protein that is produced. In recent years, a new group of PRRs, the Nod-like receptors (NLR) have been discovered. They often cooperate with TLR signaling to induce potent inflammatory responses. Many NLRs can form inflammasomes, which facilitate the production of the potent pro-inflammatory cytokine IL-1β and other inflammatory mediators. In contrast to TLRs, the importance of post-transcriptional regulators in the context of inflammasomes has not been well defined. This chapter describes a series of experimental approaches to determine the effect of post-transcriptional regulation for a gene of interest using the best-studied NLR, NLRP3, as an example. To start investigating post-transcriptional regulation, 3'UTR luciferase experiments can be performed to test if regulatory sequences in the 3'UTR are functional. An RNA pull-down approach followed by mass spectrometry provides an unbiased assay to identify RNA-binding proteins that target the 3'UTR. Candidate binding proteins can then be further validated by RNA immunoprecipitation (RNA-IP), where the candidate protein is isolated using a specific antibody and bound mRNAs are analyzed by qPCR.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 43%
Student > Ph. D. Student 1 14%
Other 1 14%
Student > Master 1 14%
Unknown 1 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 43%
Agricultural and Biological Sciences 3 43%
Unknown 1 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 January 2016.
All research outputs
#20,302,535
of 22,840,638 outputs
Outputs from Methods in molecular biology
#9,917
of 13,127 outputs
Outputs of similar age
#330,613
of 393,571 outputs
Outputs of similar age from Methods in molecular biology
#1,053
of 1,470 outputs
Altmetric has tracked 22,840,638 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,127 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,571 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,470 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.