↓ Skip to main content

Programmed Cell Death

Overview of attention for book
Cover of 'Programmed Cell Death'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry
  3. Altmetric Badge
    Chapter 2 In Vivo Apoptosis Imaging Using Site-Specifically 68 Ga-Labeled Annexin V
  4. Altmetric Badge
    Chapter 3 Detection of Active Caspases During Apoptosis Using Fluorescent Activity-Based Probes
  5. Altmetric Badge
    Chapter 4 Detection of Initiator Caspase Induced Proximity in Single Cells by Caspase Bimolecular Fluorescence Complementation
  6. Altmetric Badge
    Chapter 5 In Vitro Use of Peptide Based Substrates and Inhibitors of Apoptotic Caspases
  7. Altmetric Badge
    Chapter 6 Programmed Cell Death
  8. Altmetric Badge
    Chapter 7 Analysis of Cell Death Induction in Intestinal Organoids In Vitro
  9. Altmetric Badge
    Chapter 8 In Vitro Differentiation of Mouse Granulocytes
  10. Altmetric Badge
    Chapter 9 Programmed Cell Death
  11. Altmetric Badge
    Chapter 10 Isolation of Cardiomyocytes and Cardiofibroblasts for Ex Vivo Analysis
  12. Altmetric Badge
    Chapter 11 Programmed Cell Death
  13. Altmetric Badge
    Chapter 12 Programmed Cell Death
  14. Altmetric Badge
    Chapter 13 Modeling Metazoan Apoptotic Pathways in Yeast
  15. Altmetric Badge
    Chapter 14 Characterizing Bcl-2 Family Protein Conformation and Oligomerization Using Cross-Linking and Antibody Gel-Shift in Conjunction with Native PAGE
  16. Altmetric Badge
    Chapter 15 Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes
  17. Altmetric Badge
    Chapter 16 Preparing Samples for Crystallization of Bcl-2 Family Complexes
  18. Altmetric Badge
    Chapter 17 Programmed Cell Death
  19. Altmetric Badge
    Chapter 18 Programmed Cell Death
  20. Altmetric Badge
    Chapter 19 Programmed Cell Death
  21. Altmetric Badge
    Chapter 20 Proteomic Profiling of Cell Death: Stable Isotope Labeling and Mass Spectrometry Analysis
Attention for Chapter 12: Programmed Cell Death
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Programmed Cell Death
Chapter number 12
Book title
Programmed Cell Death
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3581-9_12
Pubmed ID
Book ISBNs
978-1-4939-3579-6, 978-1-4939-3581-9
Authors

Kacprzyk, Joanna, Dauphinee, Adrian N, Gallois, Patrick, Gunawardena, Arunika Hlan, McCabe, Paul F, Dauphinee, Adrian N., Gunawardena, Arunika HLAN, McCabe, Paul F., Joanna Kacprzyk, Adrian N. Dauphinee, Patrick Gallois, Arunika HLAN Gunawardena, Paul F. McCabe, Gunawardena, Arunika H. L. A. N.

Abstract

Programmed cell death (PCD) is a critical component of plant development, defense against invading pathogens, and response to environmental stresses. In this chapter, we provide detailed technical methods for studying PCD associated with plant development or induced by abiotic stress. A root hair assay or electrolyte leakage assay are excellent techniques for the quantitative determination of PCD and/or cellular injury induced in response to abiotic stress, whereas the lace plant provides a unique model that facilitates the study of genetically regulated PCD during leaf development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 22%
Student > Master 4 15%
Student > Ph. D. Student 4 15%
Student > Bachelor 3 11%
Student > Doctoral Student 1 4%
Other 4 15%
Unknown 5 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 41%
Biochemistry, Genetics and Molecular Biology 7 26%
Engineering 3 11%
Chemical Engineering 1 4%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2020.
All research outputs
#18,135,049
of 23,298,349 outputs
Outputs from Methods in molecular biology
#7,411
of 13,337 outputs
Outputs of similar age
#270,351
of 396,025 outputs
Outputs of similar age from Methods in molecular biology
#756
of 1,474 outputs
Altmetric has tracked 23,298,349 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,337 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,025 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,474 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.