↓ Skip to main content

Programmed Cell Death

Overview of attention for book
Cover of 'Programmed Cell Death'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry
  3. Altmetric Badge
    Chapter 2 In Vivo Apoptosis Imaging Using Site-Specifically 68 Ga-Labeled Annexin V
  4. Altmetric Badge
    Chapter 3 Detection of Active Caspases During Apoptosis Using Fluorescent Activity-Based Probes
  5. Altmetric Badge
    Chapter 4 Detection of Initiator Caspase Induced Proximity in Single Cells by Caspase Bimolecular Fluorescence Complementation
  6. Altmetric Badge
    Chapter 5 In Vitro Use of Peptide Based Substrates and Inhibitors of Apoptotic Caspases
  7. Altmetric Badge
    Chapter 6 Programmed Cell Death
  8. Altmetric Badge
    Chapter 7 Analysis of Cell Death Induction in Intestinal Organoids In Vitro
  9. Altmetric Badge
    Chapter 8 In Vitro Differentiation of Mouse Granulocytes
  10. Altmetric Badge
    Chapter 9 Programmed Cell Death
  11. Altmetric Badge
    Chapter 10 Isolation of Cardiomyocytes and Cardiofibroblasts for Ex Vivo Analysis
  12. Altmetric Badge
    Chapter 11 Programmed Cell Death
  13. Altmetric Badge
    Chapter 12 Programmed Cell Death
  14. Altmetric Badge
    Chapter 13 Modeling Metazoan Apoptotic Pathways in Yeast
  15. Altmetric Badge
    Chapter 14 Characterizing Bcl-2 Family Protein Conformation and Oligomerization Using Cross-Linking and Antibody Gel-Shift in Conjunction with Native PAGE
  16. Altmetric Badge
    Chapter 15 Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes
  17. Altmetric Badge
    Chapter 16 Preparing Samples for Crystallization of Bcl-2 Family Complexes
  18. Altmetric Badge
    Chapter 17 Programmed Cell Death
  19. Altmetric Badge
    Chapter 18 Programmed Cell Death
  20. Altmetric Badge
    Chapter 19 Programmed Cell Death
  21. Altmetric Badge
    Chapter 20 Proteomic Profiling of Cell Death: Stable Isotope Labeling and Mass Spectrometry Analysis
Attention for Chapter 3: Detection of Active Caspases During Apoptosis Using Fluorescent Activity-Based Probes
Altmetric Badge

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Detection of Active Caspases During Apoptosis Using Fluorescent Activity-Based Probes
Chapter number 3
Book title
Programmed Cell Death
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3581-9_3
Pubmed ID
Book ISBNs
978-1-4939-3579-6, 978-1-4939-3581-9
Authors

Laura E. Edgington-Mitchell, Matthew Bogyo, Edgington-Mitchell, Laura E., Bogyo, Matthew

Abstract

Activity-based probes (ABPs) are reactive small molecules that covalently bind to active enzymes. When tagged with a fluorophore, ABPs serve as powerful tools to investigate enzymatic activity across a wide variety of applications. In this chapter, we provide detailed methods for using fluorescent ABPs to detect the activity of caspases during the onset of apoptosis in vitro. We describe how these probes can be used to biochemically profile caspase activity in vitro using fluorescent SDS-PAGE as well as their application to imaging protease activity in live animals and tissues.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 38%
Student > Ph. D. Student 3 19%
Researcher 2 13%
Student > Master 1 6%
Professor > Associate Professor 1 6%
Other 0 0%
Unknown 3 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 31%
Agricultural and Biological Sciences 2 13%
Chemistry 2 13%
Immunology and Microbiology 1 6%
Philosophy 1 6%
Other 2 13%
Unknown 3 19%