↓ Skip to main content

Bacterial Multidrug Exporters

Overview of attention for book
Cover of 'Bacterial Multidrug Exporters'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins)
  3. Altmetric Badge
    Chapter 2 Crystallographic Analysis of Drug and Inhibitor-Binding Structure of RND-Type Multidrug Exporter AcrB in Physiologically Relevant Asymmetric Crystals
  4. Altmetric Badge
    Chapter 3 Crystallographic Analysis of MATE-Type Multidrug Exporter with Its Inhibitors
  5. Altmetric Badge
    Chapter 4 Crystallographic Analysis of the CusBA Heavy-Metal Efflux Complex of Escherichia coli
  6. Altmetric Badge
    Chapter 5 Purification of AcrAB-TolC Multidrug Efflux Pump for Cryo-EM Analysis
  7. Altmetric Badge
    Chapter 6 NMR Spectroscopy Approach to Study the Structure, Orientation, and Mechanism of the Multidrug Exporter EmrE
  8. Altmetric Badge
    Chapter 7 Generation of Conformation-Specific Antibody Fragments for Crystallization of the Multidrug Resistance Transporter MdfA
  9. Altmetric Badge
    Chapter 8 Biochemical Reconstitution and Characterization of Multicomponent Drug Efflux Transporters
  10. Altmetric Badge
    Chapter 9 Covalently Linked Trimers of RND (Resistance-Nodulation-Division) Efflux Transporters to Study Their Mechanism of Action: Escherichia coli AcrB Multidrug Exporter as an Example
  11. Altmetric Badge
    Chapter 10 Determining Ligand Path Through a Major Drug Transporter, AcrB, in Escherichia coli
  12. Altmetric Badge
    Chapter 11 Molecular Modeling of Multidrug Properties of Resistance Nodulation Division (RND) Transporters
  13. Altmetric Badge
    Chapter 12 A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria
  14. Altmetric Badge
    Chapter 13 Regulation of the Expression of Bacterial Multidrug Exporters by Two-Component Signal Transduction Systems
  15. Altmetric Badge
    Chapter 14 Study of the Expression of Bacterial Multidrug Efflux Pumps in Anaerobic Conditions
  16. Altmetric Badge
    Chapter 15 Identification of a Staphylococcus aureus Efflux Pump Regulator Using a DNA–Protein Affinity Technique
  17. Altmetric Badge
    Chapter 16 High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems
  18. Altmetric Badge
    Chapter 17 Single-Molecule Analysis of Membrane Transporter Activity by Means of a Microsystem
  19. Altmetric Badge
    Chapter 18 Large-Scale Femtoliter Droplet Array for Single Cell Efflux Assay of Bacteria
  20. Altmetric Badge
    Chapter 19 Reconstitution and Transport Analysis of Eukaryotic Transporters in the Post-Genomic Era
Attention for Chapter 7: Generation of Conformation-Specific Antibody Fragments for Crystallization of the Multidrug Resistance Transporter MdfA
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Generation of Conformation-Specific Antibody Fragments for Crystallization of the Multidrug Resistance Transporter MdfA
Chapter number 7
Book title
Bacterial Multidrug Exporters
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7454-2_7
Pubmed ID
Book ISBNs
978-1-4939-7452-8, 978-1-4939-7454-2
Authors

Frank Jaenecke, Yoshiko Nakada-Nakura, Kumar Nagarathinam, Satoshi Ogasawara, Kehong Liu, Yunhon Hotta, So Iwata, Norimichi Nomura, Mikio Tanabe

Abstract

A major hurdle in membrane protein crystallography is generating crystals diffracting sufficiently for structure determination. This is often attributed not only to the difficulty of obtaining functionally active protein in mg amounts but also to the intrinsic flexibility of its multiple conformations. The cocrystallization of membrane proteins with antibody fragments has been reported as an effective approach to improve the diffraction quality of membrane protein crystals by limiting the intrinsic flexibility. Isolating suitable antibody fragments recognizing a single conformation of a native membrane protein is not a straightforward task. However, by a systematic screening approach, the time to obtain suitable antibody fragments and consequently the chance of obtaining diffracting crystals can be reduced. In this chapter, we describe a protocol for the generation of Fab fragments recognizing the native conformation of a major facilitator superfamily (MFS)-type MDR transporter MdfA from Escherichia coli. We confirmed that the use of Fab fragments was efficient for stabilization of MdfA and improvement of its crystallization properties.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Professor 1 11%
Student > Bachelor 1 11%
Student > Ph. D. Student 1 11%
Professor > Associate Professor 1 11%
Other 0 0%
Unknown 3 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 33%
Chemistry 2 22%
Unknown 4 44%