↓ Skip to main content

Pyrosequencing

Overview of attention for book
Cover of 'Pyrosequencing'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The History of Pyrosequencing ®
  3. Altmetric Badge
    Chapter 2 PyroMark(®) Instruments, Chemistry, and Software for Pyrosequencing(®) Analysis.
  4. Altmetric Badge
    Chapter 3 Software-Based Pyrogram ® Evaluation
  5. Altmetric Badge
    Chapter 4 Quantitative Validation and Quality Control of Pyrosequencing ® Assays
  6. Altmetric Badge
    Chapter 5 Extended KRAS and NRAS Mutation Profiling by Pyrosequencing ®
  7. Altmetric Badge
    Chapter 6 Universal BRAF State Detection by the Pyrosequencing ® -Based U-BRAF V600 Assay
  8. Altmetric Badge
    Chapter 7 Pyrosequencing
  9. Altmetric Badge
    Chapter 8 Analysis of Mutational Hotspots in Routinely Processed Bone Marrow Trephines by Pyrosequencing ®
  10. Altmetric Badge
    Chapter 9 Analysis of Copy Number Variation by Pyrosequencing(®) Using Paralogous Sequences.
  11. Altmetric Badge
    Chapter 10 Prenatal Diagnosis of Chromosomal Aneuploidies by Quantitative Pyrosequencing(®).
  12. Altmetric Badge
    Chapter 11 HLA-B and HLA-C Supratyping by Pyrosequencing ®
  13. Altmetric Badge
    Chapter 12 Allele Quantification Pyrosequencing(®) at Designated SNP Sites to Detect Allelic Expression Imbalance and Loss-of-Heterozygosity.
  14. Altmetric Badge
    Chapter 13 Quantitative DNA Methylation Analysis by Pyrosequencing(®).
  15. Altmetric Badge
    Chapter 14 Quantitative Methylation Analysis of the PCDHB Gene Cluster.
  16. Altmetric Badge
    Chapter 15 Assessment of Changes in Global DNA Methylation Levels by Pyrosequencing(®) of Repetitive Elements.
  17. Altmetric Badge
    Chapter 16 Global Analysis of DNA 5-Methylcytosine Using the Luminometric Methylation Assay, LUMA.
  18. Altmetric Badge
    Chapter 17 Limiting Dilution Bisulfite Pyrosequencing(®): A Method for Methylation Analysis of Individual DNA Molecules in a Single or a Few Cells.
  19. Altmetric Badge
    Chapter 18 Detection of Loss of Imprinting by Pyrosequencing(®).
  20. Altmetric Badge
    Chapter 19 Analysis of DNA Methylation Patterns in Single Blastocysts by Pyrosequencing(®).
  21. Altmetric Badge
    Chapter 20 Allele-Specific DNA Methylation Detection by Pyrosequencing(®).
  22. Altmetric Badge
    Chapter 21 SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing ®
  23. Altmetric Badge
    Chapter 22 DNA Methylation Analysis of ChIP Products at Single Nucleotide Resolution by Pyrosequencing(®).
  24. Altmetric Badge
    Chapter 23 Multiplex Pyrosequencing ® : Simultaneous Genotyping Based on SNPs from Distant Genomic Regions
  25. Altmetric Badge
    Chapter 24 Pyrosequencing
  26. Altmetric Badge
    Chapter 25 Application of Pyrosequencing ® in Food Biodefense
  27. Altmetric Badge
    Chapter 26 Pyrosequencing
  28. Altmetric Badge
    Chapter 27 Tissue-Specific DNA Methylation Patterns in Forensic Samples Detected by Pyrosequencing(®).
Attention for Chapter 18: Detection of Loss of Imprinting by Pyrosequencing(®).
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Detection of Loss of Imprinting by Pyrosequencing(®).
Chapter number 18
Book title
Pyrosequencing
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2715-9_18
Pubmed ID
Book ISBNs
978-1-4939-2714-2, 978-1-4939-2715-9
Authors

Tabano, Silvia, Bonaparte, Eleonora, Miozzo, Monica, Silvia Tabano, Eleonora Bonaparte, Monica Miozzo

Abstract

Genomic imprinting is an epigenetically regulated process determining allele-specific expression in a parent-of-origin dependent manner. Altered expression of imprinted genes characterizes numerous congenital diseases including Beckwith-Wiedemann, Silver-Russell, Angelman, and Prader-Willi syndromes as well as acquired disorders such as cancer. The detection of imprinting alterations has important translational implications in clinics and the application of the Pyrosequencing(®) technology offers the possibility to identify accurately also subtle modifications in allele-specific expression and in DNA methylation levels.Here, we describe two methods to investigate genomic imprinting defects (loss of imprinting, LOI) using Pyrosequencing: (1) Allele-specific expression analysis based on single nucleotide polymorphism (SNP), and (2) quantification of DNA methylation.The protocol for the quantification of the allele-specific expression is carried out by analyzing an informative SNP located within the transcribed portion of an imprinted gene. The method includes the cDNA amplification of the region containing the SNP and the Pyrosequencing-based analysis for the quantitative allelic discrimination comparing the ratio of the two alleles.The second protocol allows the accurate quantification of the DNA methylation levels at the Imprinting Control Regions (ICRs). Imprinted genes are clustered in chromosomal regions and their expression is mainly regulated by DNA methylation at CpG sites located within the ICRs. After bisulfite modification of the genomic DNA, the region of interest is amplified by PCR and analyzed by Pyrosequencing. The methylation value at each CpG site is calculated by the CpG software, which determines the ratio of the incorporation of "C" and "T" and converts the value in methylation percentage.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Researcher 2 15%
Student > Master 2 15%
Professor 1 8%
Lecturer > Senior Lecturer 1 8%
Other 2 15%
Unknown 2 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 23%
Medicine and Dentistry 3 23%
Social Sciences 2 15%
Nursing and Health Professions 1 8%
Chemistry 1 8%
Other 0 0%
Unknown 3 23%