↓ Skip to main content

TGF-β Signaling

Overview of attention for book
Cover of 'TGF-β Signaling'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Regulation of TGF-β Receptors
  3. Altmetric Badge
    Chapter 2 Determining TGF-β Receptor Levels in the Cell Membrane.
  4. Altmetric Badge
    Chapter 3 Posttranslational Modifications of TGF-β Receptors.
  5. Altmetric Badge
    Chapter 4 Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily
  6. Altmetric Badge
    Chapter 5 Phosphorylation of Smads by Intracellular Kinases
  7. Altmetric Badge
    Chapter 6 Analysis of Smad Phosphatase Activity In Vitro
  8. Altmetric Badge
    Chapter 7 Three-dimensional Mammary Epithelial Cell Morphogenesis Model for Analysis of TGFß Signaling.
  9. Altmetric Badge
    Chapter 8 TGF-β Signaling in Stem Cell Regulation.
  10. Altmetric Badge
    Chapter 9 Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.
  11. Altmetric Badge
    Chapter 10 In Vitro Th Differentiation Protocol.
  12. Altmetric Badge
    Chapter 11 Interrogating TGF-β Function and Regulation in Endothelial Cells.
  13. Altmetric Badge
    Chapter 12 Isolation and Manipulation of Adipogenic Cells to Assess TGF-β Superfamily Functions.
  14. Altmetric Badge
    Chapter 13 Imaging TGFβ Signaling in Mouse Models of Cancer Metastasis.
  15. Altmetric Badge
    Chapter 14 Generation and Characterization of Smad7 Conditional Knockout Mice
  16. Altmetric Badge
    Chapter 15 Monitoring Smad Activity In Vivo Using the Xenopus Model System.
  17. Altmetric Badge
    Chapter 16 Animal Cap Assay for TGF-β Signaling.
  18. Altmetric Badge
    Chapter 17 Detection of Smad Signaling in Zebrafish Embryos.
  19. Altmetric Badge
    Chapter 18 Role of TGF-β Signaling in Coupling Bone Remodeling
  20. Altmetric Badge
    Chapter 19 Studying the Functions of TGF-β Signaling in the Ovary.
  21. Altmetric Badge
    Chapter 20 Quantitative Real-Time PCR Analysis of MicroRNAs and Their Precursors Regulated by TGF-β Signaling.
  22. Altmetric Badge
    Chapter 21 TGF-β-Regulated MicroRNAs and Their Function in Cancer Biology.
  23. Altmetric Badge
    Chapter 22 Epigenomic Regulation of Smad1 Signaling During Cellular Senescence Induced by Ras Activation.
  24. Altmetric Badge
    Chapter 23 The Role of Ubiquitination to Determine Non-Smad Signaling Responses
  25. Altmetric Badge
    Chapter 24 Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.
  26. Altmetric Badge
    Chapter 25 TGF-β Signaling
Attention for Chapter 6: Analysis of Smad Phosphatase Activity In Vitro
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
1 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of Smad Phosphatase Activity In Vitro
Chapter number 6
Book title
TGF-β Signaling
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-2966-5_6
Pubmed ID
Book ISBNs
978-1-4939-2965-8, 978-1-4939-2966-5
Authors

Tao Shen, Lan Qin, Xia Lin, Shen, Tao, Qin, Lan, Lin, Xia

Abstract

Phosphorylation of Smad1/5/8 at the C-terminal SXS motif by BMP type I receptors is one of the most critical events in BMP signaling. Conversely, protein phosphatases that dephosphorylate phospho-Smad1/5/8 can consequently prevent or terminate BMP signaling. PPM1H is an undercharacterized phosphatase in the PPM family. We recently demonstrated that PPM1H can dephosphorylate Smad1 in the cytoplasm and block BMP signaling responses in cellular assays. Here we describe in vitro method showing that PPM1H is a bona fide phosphatase for Smad1/5/8. PPM1H is produced as GST fusion protein in E. coli, and purified against glutathione sepharose beads. Bacterially purified recombinant PPM1H possesses phosphatase activity toward artificial substrate para-nitrophenyl phosphate (pNPP). Recombinant PPM1H also dephosphorylates immuno-purified phosphorylated Smad1 in test tubes. These direct in vitro phosphatase assays provide convincing evidence demonstrating the role of PPM1H as a specific phosphatase for P-Smad1.