↓ Skip to main content

Plant Proteostasis

Overview of attention for book
Cover of 'Plant Proteostasis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Approaches to Determine Protein Ubiquitination Residue Types
  3. Altmetric Badge
    Chapter 2 Immunoprecipitation of Cullin-RING Ligases (CRLs) in Arabidopsis thaliana Seedlings
  4. Altmetric Badge
    Chapter 3 Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors
  5. Altmetric Badge
    Chapter 4 Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes
  6. Altmetric Badge
    Chapter 5 Fluorescent Reporters for Ubiquitin-Dependent Proteolysis in Plants
  7. Altmetric Badge
    Chapter 6 Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro
  8. Altmetric Badge
    Chapter 7 Plant Proteostasis
  9. Altmetric Badge
    Chapter 8 Plant Proteostasis
  10. Altmetric Badge
    Chapter 9 Kinetic Analysis of Plant SUMO Conjugation Machinery
  11. Altmetric Badge
    Chapter 10 Expression, Purification, and Enzymatic Analysis of Plant SUMO Proteases
  12. Altmetric Badge
    Chapter 11 Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging
  13. Altmetric Badge
    Chapter 12 Plant Proteostasis
  14. Altmetric Badge
    Chapter 13 Plant Proteostasis
  15. Altmetric Badge
    Chapter 14 Protocols for Studying Protein Stability in an Arabidopsis Protoplast Transient Expression System
  16. Altmetric Badge
    Chapter 15 Detection and Quantification of Protein Aggregates in Plants.
  17. Altmetric Badge
    Chapter 16 Determination of Protein Carbonylation and Proteasome Activity in Seeds
  18. Altmetric Badge
    Chapter 17 Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-Based Protein Profiling in Plants
  19. Altmetric Badge
    Chapter 18 Plant Proteostasis
  20. Altmetric Badge
    Chapter 19 In Vivo Radiolabeling of Arabidopsis Chloroplast Proteins and Separation of Thylakoid Membrane Complexes by Blue Native PAGE
  21. Altmetric Badge
    Chapter 20 Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling
  22. Altmetric Badge
    Chapter 21 Sequence Search and Comparative Genomic Analysis of SUMO-Activating Enzymes Using CoGe
  23. Altmetric Badge
    Chapter 22 Plant Proteostasis
  24. Altmetric Badge
    Chapter 23 Bioinformatics Tools for Exploring the SUMO Gene Network
Attention for Chapter 22: Plant Proteostasis
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Plant Proteostasis
Chapter number 22
Book title
Plant Proteostasis
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3759-2_22
Pubmed ID
Book ISBNs
978-1-4939-3757-8, 978-1-4939-3759-2
Authors

Carretero-Paulet, Lorenzo, Albert, Victor A, Lorenzo Carretero-Paulet, Victor A. Albert

Editors

L. Maria Lois, Rune Matthiesen

Abstract

Molecular evolutionary analysis of gene families commonly involves a sequence of steps including multiple sequence alignment (MSA) and reconstructing phylogenetic trees, using any of the multiple algorithms available. SeaView is a multiplatform program that integrates different methods for performing the above tasks, and others, within a friendly and simple-to-use graphical user interface (Gouy et al. Mol Biol Evol 27(2):221-224, 2010). By using SeaView, we will investigate the evolutionary relationships among SAE1 genes in Brassicaceae species by means of two alternative methods of phylogenetic reconstruction: Maximum Likelihood (ML) and Neighbor-Joining (NJ). Prior to ML phylogenetic analysis (Guindon and Gascuel. Syst Biol 52(5):696-704, 2003), we will use ProtTest to select the best-fit evolutionary model of amino acid substitution for the MSA of SAE1 proteins (Abascal et al. Bioinformatics 21(9):2104-2105, 2005).

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 1 20%
Other 1 20%
Unknown 3 60%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 40%
Agricultural and Biological Sciences 1 20%
Unknown 2 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2016.
All research outputs
#14,857,184
of 22,880,691 outputs
Outputs from Methods in molecular biology
#4,701
of 13,133 outputs
Outputs of similar age
#219,012
of 393,699 outputs
Outputs of similar age from Methods in molecular biology
#469
of 1,471 outputs
Altmetric has tracked 22,880,691 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,133 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,699 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,471 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.