↓ Skip to main content

Brassinosteroids

Overview of attention for book
Cover of 'Brassinosteroids'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Protocol for Extraction and Isolation of Brassinosteroids from Plant Tissues
  3. Altmetric Badge
    Chapter 2 Synthetic Protocol for AFCS: A Biologically Active Fluorescent Castasterone Analog Conjugated to an Alexa Fluor 647 Dye
  4. Altmetric Badge
    Chapter 3 Physiological Analysis of Brassinosteroid Responses and Sensitivity in Rice
  5. Altmetric Badge
    Chapter 4 Light Regulation of Brassinosteroid Signaling Components: Checking Regulation of Protein Stability in Darkness
  6. Altmetric Badge
    Chapter 5 Approaches to Study Light Effects on Brassinosteroid Sensitivity
  7. Altmetric Badge
    Chapter 6 A Technical Framework for Studying the Signaling Nexus of Brassinosteroids and Immunity
  8. Altmetric Badge
    Chapter 7 Identification of Brassinosteroid Target Genes by Chromatin Immunoprecipitation Followed by High-Throughput Sequencing (ChIP-seq) and RNA-Sequencing
  9. Altmetric Badge
    Chapter 8 Quantitation of Cell Type-Specific Responses to Brassinosteroid by Deep Sequencing of Polysome-Associated Polyadenylated RNA
  10. Altmetric Badge
    Chapter 9 Methods for Modeling Brassinosteroid-Mediated Signaling in Plant Development
  11. Altmetric Badge
    Chapter 10 Quantitative Microscopic Analysis of Plasma Membrane Receptor Dynamics in Living Plant Cells
  12. Altmetric Badge
    Chapter 11 Analysis of In Vitro DNA Interactions of Brassinosteroid-Controlled Transcription Factors Using Electrophoretic Mobility Shift Assay
  13. Altmetric Badge
    Chapter 12 Identification of Brassinosteroid Signaling Complexes by Coimmunoprecipitation and Mass Spectrometry
  14. Altmetric Badge
    Chapter 13 Simplified Enrichment of Plasma Membrane Proteins from Arabidopsis thaliana Seedlings Using Differential Centrifugation and Brij-58 Treatment
  15. Altmetric Badge
    Chapter 14 Probing Activation and Deactivation of the BRASSINOSTEROID INSENSITIVE1 Receptor Kinase by Immunoprecipitation
  16. Altmetric Badge
    Chapter 15 The Primary Root of Sorghum bicolor (L. Moench) as a Model System to Study Brassinosteroid Signaling in Crops
  17. Altmetric Badge
    Chapter 16 Brassinosteroid Action in Plant Abiotic Stress Tolerance
Attention for Chapter 11: Analysis of In Vitro DNA Interactions of Brassinosteroid-Controlled Transcription Factors Using Electrophoretic Mobility Shift Assay
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of In Vitro DNA Interactions of Brassinosteroid-Controlled Transcription Factors Using Electrophoretic Mobility Shift Assay
Chapter number 11
Book title
Brassinosteroids
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6813-8_11
Pubmed ID
Book ISBNs
978-1-4939-6811-4, 978-1-4939-6813-8
Authors

Simon J. Unterholzner, Wilfried Rozhon, Brigitte Poppenberger

Editors

Eugenia Russinova, Ana I. Caño-Delgado

Abstract

Most signaling cascades ultimately lead to changes in gene expression by modulating the activity of transcription factors (TFs). The electrophoretic mobility shift assay (EMSA) is a simple but powerful in vitro method for investigation of specific protein-DNA interactions. It makes use of the fact that protein-DNA complexes have a lower electrophoretic mobility in gels than free DNA has. The application of labeled probes in combination with unlabeled competitors allows investigation of DNA-binding specificity and identification of binding motifs with single base-pair resolution. Here we describe the application of EMSAs for the study of interactions of the brassinosteroid-regulated TFs, BRASSINAZOLE-RESISTANT1, (BZR1), BRI1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1)/BZR2, and CESTA with putative binding sites. The classical approach using radiolabeled probes, as well as the more recent application of fluorescent probes, is described and the advantages and disadvantages of both methods are discussed.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 1 25%
Researcher 1 25%
Student > Master 1 25%
Unknown 1 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 50%
Biochemistry, Genetics and Molecular Biology 1 25%
Unknown 1 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 February 2018.
All research outputs
#9,968,431
of 12,452,101 outputs
Outputs from Methods in molecular biology
#4,219
of 8,342 outputs
Outputs of similar age
#233,730
of 332,512 outputs
Outputs of similar age from Methods in molecular biology
#758
of 1,475 outputs
Altmetric has tracked 12,452,101 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,342 research outputs from this source. They receive a mean Attention Score of 2.1. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,512 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,475 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.