↓ Skip to main content

CRISPR

Overview of attention for book
Cover of 'CRISPR'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Investigating CRISPR RNA Biogenesis and Function Using RNA-seq.
  3. Altmetric Badge
    Chapter 2 In Vitro Co-reconstitution of Cas Protein Complexes.
  4. Altmetric Badge
    Chapter 3 Analysis of CRISPR Pre-crRNA Cleavage
  5. Altmetric Badge
    Chapter 4 Annotation and Classification of CRISPR-Cas Systems.
  6. Altmetric Badge
    Chapter 5 Computational Detection of CRISPR/crRNA Targets
  7. Altmetric Badge
    Chapter 6 High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium.
  8. Altmetric Badge
    Chapter 7 Spacer-Based Macroarrays for CRISPR Genotyping
  9. Altmetric Badge
    Chapter 8 Analysis of crRNA Using Liquid Chromatography Electrospray Ionization Mass Spectrometry (LC ESI MS).
  10. Altmetric Badge
    Chapter 9 Rapid Multiplex Creation of Escherichia coli Strains Capable of Interfering with Phage Infection Through CRISPR.
  11. Altmetric Badge
    Chapter 10 Exploring CRISPR Interference by Transformation with Plasmid Mixtures: Identification of Target Interference Motifs in Escherichia coli
  12. Altmetric Badge
    Chapter 11 CRISPR
  13. Altmetric Badge
    Chapter 12 Expression and Purification of the CMR (Type III-B) Complex in Sulfolobus solfataricus.
  14. Altmetric Badge
    Chapter 13 Procedures for Generating CRISPR Mutants with Novel Spacers Acquired from Viruses or Plasmids.
  15. Altmetric Badge
    Chapter 14 Archaeal Viruses of the Sulfolobales: Isolation, Infection, and CRISPR Spacer Acquisition.
  16. Altmetric Badge
    Chapter 15 Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function.
  17. Altmetric Badge
    Chapter 16 Analysis of nuclease activity of cas1 proteins against complex DNA substrates.
  18. Altmetric Badge
    Chapter 17 Characterizing Metal-Dependent Nucleases of CRISPR-Cas Prokaryotic Adaptive Immunity Systems.
  19. Altmetric Badge
    Chapter 18 Cas3 Nuclease–Helicase Activity Assays
  20. Altmetric Badge
    Chapter 19 Chemical and Enzymatic Footprint Analyses of R-Loop Formation by Cascade-crRNA Complex
  21. Altmetric Badge
    Chapter 20 Creation and Analysis of a Virome: Using CRISPR Spacers.
  22. Altmetric Badge
    Chapter 21 Targeted Mutagenesis in Zebrafish Using CRISPR RNA-Guided Nucleases.
  23. Altmetric Badge
    Chapter 22 Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9.
  24. Altmetric Badge
    Chapter 23 Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
Attention for Chapter 4: Annotation and Classification of CRISPR-Cas Systems.
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users
patent
22 patents
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
770 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Annotation and Classification of CRISPR-Cas Systems.
Chapter number 4
Book title
CRISPR
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2687-9_4
Pubmed ID
Book ISBNs
978-1-4939-2686-2, 978-1-4939-2687-9
Authors

Makarova, Kira S, Koonin, Eugene V, Kira S. Makarova, Eugene V. Koonin, Makarova, Kira S., Koonin, Eugene V.

Editors

Magnus Lundgren, Emmanuelle Charpentier, Peter C. Fineran

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 770 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 <1%
Germany 1 <1%
Belgium 1 <1%
Unknown 767 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 164 21%
Student > Ph. D. Student 104 14%
Student > Master 98 13%
Researcher 47 6%
Other 27 4%
Other 68 9%
Unknown 262 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 274 36%
Agricultural and Biological Sciences 87 11%
Immunology and Microbiology 36 5%
Medicine and Dentistry 17 2%
Unspecified 10 1%
Other 55 7%
Unknown 291 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 27. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 September 2023.
All research outputs
#1,428,707
of 25,504,429 outputs
Outputs from Methods in molecular biology
#154
of 14,235 outputs
Outputs of similar age
#18,732
of 360,109 outputs
Outputs of similar age from Methods in molecular biology
#13
of 998 outputs
Altmetric has tracked 25,504,429 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 14,235 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,109 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 998 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.