↓ Skip to main content

Chromatin Immunoprecipitation

Overview of attention for book
Cover of 'Chromatin Immunoprecipitation'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance
  3. Altmetric Badge
    Chapter 2 Considerations on Experimental Design and Data Analysis of Chromatin Immunoprecipitation Experiments
  4. Altmetric Badge
    Chapter 3 How to Combine ChIP with qPCR
  5. Altmetric Badge
    Chapter 4 Analysis of Protein–DNA Interaction by Chromatin Immunoprecipitation and DNA Tiling Microarray (ChIP-on-chip)
  6. Altmetric Badge
    Chapter 5 Chromatin Immunoprecipitation from Mouse Embryonic Tissue or Adherent Cells in Culture, Followed by Next-Generation Sequencing
  7. Altmetric Badge
    Chapter 6 Chromatin RNA Immunoprecipitation (ChRIP)
  8. Altmetric Badge
    Chapter 7 DNA Accessibility by MNase Digestions
  9. Altmetric Badge
    Chapter 8 Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq)
  10. Altmetric Badge
    Chapter 9 ChIP-re-ChIP: Co-occupancy Analysis by Sequential Chromatin Immunoprecipitation
  11. Altmetric Badge
    Chapter 10 Sm-ChIPi: Single-Molecule Chromatin Immunoprecipitation Imaging
  12. Altmetric Badge
    Chapter 11 Chromatin Immunoprecipitation of Skeletal Muscle Tissue
  13. Altmetric Badge
    Chapter 12 Chromatin Immunoprecipitation Assay in the Hyperthermoacidophilic Crenarchaeon, Sulfolobus acidocaldarius
  14. Altmetric Badge
    Chapter 13 Using Intra-ChIP to Measure Protein–DNA Interactions in Intracellular Pathogens
  15. Altmetric Badge
    Chapter 14 Native Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) from Low Cell Numbers
  16. Altmetric Badge
    Chapter 15 MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation
  17. Altmetric Badge
    Chapter 16 Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis
  18. Altmetric Badge
    Chapter 17 Analysis of ChIP-seq Data in R/Bioconductor
  19. Altmetric Badge
    Chapter 18 Spike-In Normalization of ChIP Data Using DNA–DIG–Antibody Complex
Attention for Chapter 8: Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq)
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
2 X users
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq)
Chapter number 8
Book title
Chromatin Immunoprecipitation
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7380-4_8
Pubmed ID
Book ISBNs
978-1-4939-7379-8, 978-1-4939-7380-4
Authors

Wieteke Anna Maria Hoeijmakers, Richárd Bártfai, Hoeijmakers, Wieteke Anna Maria, Bártfai, Richárd

Abstract

MNase-seq allows the genome-wide examination of the nucleosome landscape by determination of nucleosome positioning and occupancy. Typically, native or formaldehyde fixed chromatin is subjected to digestion by micrococcal nuclease (MNase), which degrades linker DNA and yields mainly mono-nucleosomes. The resulting material can be processed directly or can be subjected to an optional chromatin immunoprecipitation step (MNase-ChIP-seq). De-crosslinked and purified DNA is then subjected to next-generation sequencing. The protocol presented here has been tailored for the analysis of nucleosome landscape in the malaria parasite, Plasmodium falciparum, but most steps are directly applicable to other cell types. We also discuss general considerations for experimental design and computational analysis, which are crucial for accurate investigation of the nucleosome landscape.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 36%
Researcher 4 18%
Student > Bachelor 3 14%
Student > Master 3 14%
Unspecified 1 5%
Other 1 5%
Unknown 2 9%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 36%
Agricultural and Biological Sciences 5 23%
Medicine and Dentistry 2 9%
Unspecified 1 5%
Immunology and Microbiology 1 5%
Other 1 5%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2021.
All research outputs
#7,029,427
of 23,005,189 outputs
Outputs from Methods in molecular biology
#2,110
of 13,160 outputs
Outputs of similar age
#142,218
of 442,254 outputs
Outputs of similar age from Methods in molecular biology
#204
of 1,498 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 13,160 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,254 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.