↓ Skip to main content

RNA Scaffolds

Overview of attention for book
Cover of 'RNA Scaffolds'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Method to Predict the 3D Structure of an RNA Scaffold
  3. Altmetric Badge
    Chapter 2 Post-crystallization Improvement of RNA Crystal Diffraction Quality
  4. Altmetric Badge
    Chapter 3 Expression and Purification of RNA–Protein Complexes in Escherichia coli
  5. Altmetric Badge
    Chapter 4 Production of Homogeneous Recombinant RNA Using a tRNA Scaffold and Hammerhead Ribozymes
  6. Altmetric Badge
    Chapter 5 In Vivo Production of Small Recombinant RNAs Embedded in a 5S rRNA-Derived Protective Scaffold
  7. Altmetric Badge
    Chapter 6 Detection of RNA–Protein Interactions Using Tethered RNA Affinity Capture
  8. Altmetric Badge
    Chapter 7 A Universal Method for Labeling Native RNA in Live Bacterial Cells
  9. Altmetric Badge
    Chapter 8 Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
  10. Altmetric Badge
    Chapter 9 RNA Scaffold: Designed to Co-localize Enzymes
  11. Altmetric Badge
    Chapter 10 Artificial Ligase Ribozymes Isolated by a “Design and Selection” Strategy
  12. Altmetric Badge
    Chapter 11 Engineering aptazyme switches for conditional gene expression in Mammalian cells utilizing an in vivo screening approach.
  13. Altmetric Badge
    Chapter 12 Aptazyme-Based Riboswitches and Logic Gates in Mammalian Cells
  14. Altmetric Badge
    Chapter 13 Design and Characterization of Topological Small RNAs.
  15. Altmetric Badge
    Chapter 14 Folding RNA-Protein Complex into Designed Nanostructures.
  16. Altmetric Badge
    Chapter 15 Simple Method for Constructing RNA Triangle, Square, Pentagon by Tuning Interior RNA 3WJ Angle from 60° to 90° or 108°.
  17. Altmetric Badge
    Chapter 16 RNA-Mediated CdS-Based Nanostructures.
  18. Altmetric Badge
    Chapter 17 An Effective Method for Specific Gene Silencing in Escherichia coli Using Artificial Small RNA.
Attention for Chapter 1: A Method to Predict the 3D Structure of an RNA Scaffold
Altmetric Badge

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Method to Predict the 3D Structure of an RNA Scaffold
Chapter number 1
Book title
RNA Scaffolds
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2730-2_1
Pubmed ID
Book ISBNs
978-1-4939-2729-6, 978-1-4939-2730-2
Authors

Xiaojun Xu, Shi-Jie Chen, Xu, Xiaojun, Chen, Shi-Jie

Abstract

The ever increasing discoveries of noncoding RNA functions draw a strong demand for RNA structure determination from the sequence. In recently years, computational studies for RNA structures, at both the two-dimensional and the three-dimensional levels, led to several highly promising new developments. In this chapter, we describe a recently developed RNA structure prediction method based on the virtual bond-based coarse-grained folding model (Vfold). The main emphasis in the Vfold method is placed on the loop entropy calculations, the treatment of noncanonical (mismatch) interactions and the 3D structure assembly from motif-based template library. As case studies, we use the glycine riboswitch and the G310-U376 domain of MLV RNA to illustrate the Vfold-based prediction of RNA 3D structures from the sequences.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 27%
Student > Ph. D. Student 2 18%
Professor 1 9%
Unspecified 1 9%
Student > Bachelor 1 9%
Other 1 9%
Unknown 2 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 36%
Agricultural and Biological Sciences 3 27%
Unspecified 1 9%
Physics and Astronomy 1 9%
Unknown 2 18%