↓ Skip to main content

Xenopus

Overview of attention for book
Cover of 'Xenopus'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Husbandry, General Care, and Transportation of Xenopus laevis and Xenopus tropicalis
  3. Altmetric Badge
    Chapter 2 Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos
  4. Altmetric Badge
    Chapter 3 Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering
  5. Altmetric Badge
    Chapter 4 Targeted Genome Engineering in Xenopus Using the Transcription Activator-Like Effector Nuclease (TALEN) Technology
  6. Altmetric Badge
    Chapter 5 Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis
  7. Altmetric Badge
    Chapter 6 BATCH-GE: Analysis of NGS Data for Genome Editing Assessment
  8. Altmetric Badge
    Chapter 7 A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair
  9. Altmetric Badge
    Chapter 8 How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique
  10. Altmetric Badge
    Chapter 9 Targeted Electroporation in the CNS in Xenopus Embryos
  11. Altmetric Badge
    Chapter 10 Conditional Chemogenetic Ablation of Photoreceptor Cells in Xenopus Retina
  12. Altmetric Badge
    Chapter 11 Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors
  13. Altmetric Badge
    Chapter 12 CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis
  14. Altmetric Badge
    Chapter 13 Quantitative Proteomics of Xenopus Embryos I, Sample Preparation
  15. Altmetric Badge
    Chapter 14 Quantitative Proteomics for Xenopus Embryos II, Data Analysis
  16. Altmetric Badge
    Chapter 15 Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System
  17. Altmetric Badge
    Chapter 16 X-FaCT: Xenopus-Fast Clearing Technique
  18. Altmetric Badge
    Chapter 17 Cell Cycle Analysis of the Embryonic Brain of Fluorescent Reporter Xenopus tropicalis by Flow Cytometry
  19. Altmetric Badge
    Chapter 18 Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis
  20. Altmetric Badge
    Chapter 19 Evaluating Blood Cell Populations in Xenopus Using Flow Cytometry and Differential Counts by Cytospin
  21. Altmetric Badge
    Chapter 20 Isolation and Culture of Amphibian (Xenopus laevis) Sub-Capsular Liver and Bone Marrow Cells
  22. Altmetric Badge
    Chapter 21 Isolation and Primary Culture Methods of Adult and Larval Myogenic Cells from Xenopus laevis
Attention for Chapter 3: Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering
Chapter number 3
Book title
Xenopus
Published in
Methods in molecular biology, August 2018
DOI 10.1007/978-1-4939-8784-9_3
Pubmed ID
Book ISBNs
978-1-4939-8783-2, 978-1-4939-8784-9
Authors

Thomas Naert, Kris Vleminckx, Naert, Thomas, Vleminckx, Kris

Abstract

In this chapter, we convey a state-of-the art update to the 2014 Nakayama protocol for CRISPR/Cas9 genome engineering in Xenopus tropicalis (X. tropicalis). We discuss in depth, gRNA design software and rules, gRNA synthesis, and procedures for tissue- and tissue-specific CRISPR/Cas9 genome editing by targeted microinjection in X. tropicalis embryos. We demonstrate the methodology by which any standard equipped Xenopus researcher with microinjection experience can generate F0 CRISPR/Cas9 mediated mosaic mutants (crispants) within one to two work-week(s). The described methodology allows CRISPR/Cas9 efficiencies to be high enough to read out phenotypic consequences, and thus perform gene function analysis, in the F0 crispant. Additionally, we provide the framework for performing multiplex tissue-specific CRISPR/Cas9 experiments generating crispants mosaic mutant in up to four genes simultaneously, which can be of importance for Laevis researchers aiming to target by CRISPR/Cas9 both the S and L homeolog of a gene simultaneously. Finally, we discuss off-target concerns, how to minimize these and ways to rapidly bypass reviewer off-target critique by exploiting the advantages of X. tropicalis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 30%
Professor > Associate Professor 4 17%
Student > Master 3 13%
Professor 2 9%
Researcher 2 9%
Other 2 9%
Unknown 3 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 43%
Agricultural and Biological Sciences 5 22%
Chemical Engineering 1 4%
Physics and Astronomy 1 4%
Medicine and Dentistry 1 4%
Other 2 9%
Unknown 3 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 April 2019.
All research outputs
#17,989,170
of 23,102,082 outputs
Outputs from Methods in molecular biology
#7,315
of 13,208 outputs
Outputs of similar age
#240,302
of 334,863 outputs
Outputs of similar age from Methods in molecular biology
#136
of 248 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,208 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,863 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.