↓ Skip to main content

Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation

Overview of attention for book
Cover of 'Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Fluorescence Reporter-Based Genome-Wide RNA Interference Screening to Identify Alternative Splicing Regulators.
  3. Altmetric Badge
    Chapter 2 Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.
  4. Altmetric Badge
    Chapter 3 Efficient Preparation of High-Complexity ChIP-Seq Profiles from Early Xenopus Embryos.
  5. Altmetric Badge
    Chapter 4 Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation
  6. Altmetric Badge
    Chapter 5 Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-Seq) Protocol for Zebrafish Embryos.
  7. Altmetric Badge
    Chapter 6 Establishment of Time- and Cell-Specific RNAi in Caenorhabditis elegans.
  8. Altmetric Badge
    Chapter 7 Cell-Penetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing.
  9. Altmetric Badge
    Chapter 8 Epigenetic Analysis of Endocrine Cell Subtypes from Human Pancreatic Islets.
  10. Altmetric Badge
    Chapter 9 eIF3 Regulation of Protein Synthesis, Tumorigenesis, and Therapeutic Response.
  11. Altmetric Badge
    Chapter 10 High-Resolution Gene Expression Profiling of RNA Synthesis, Processing, and Decay by Metabolic Labeling of Newly Transcribed RNA Using 4-Thiouridine.
  12. Altmetric Badge
    Chapter 11 Accurate Detection of Differential Expression and Splicing Using Low-Level Features.
  13. Altmetric Badge
    Chapter 12 Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry.
  14. Altmetric Badge
    Chapter 13 Determining if an mRNA is a Substrate of Nonsense-Mediated mRNA Decay in Saccharomyces cerevisiae.
  15. Altmetric Badge
    Chapter 14 Optimizing In Vitro Pre-mRNA 3' Cleavage Efficiency: Reconstitution from Anion-Exchange Separated HeLa Cleavage Factors and from Adherent HeLa Cell Nuclear Extract.
  16. Altmetric Badge
    Chapter 15 Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation
  17. Altmetric Badge
    Chapter 16 Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells.
  18. Altmetric Badge
    Chapter 17 In Vitro Assay to Study Histone Ubiquitination During Transcriptional Regulation.
  19. Altmetric Badge
    Chapter 18 Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation
  20. Altmetric Badge
    Chapter 19 Large-Scale RNA Interference Screening to Identify Transcriptional Regulators of a Tumor Suppressor Gene.
  21. Altmetric Badge
    Chapter 20 Transcriptional Analysis-Based Integrative Genomics Approach to Identify Tumor-Promoting Metabolic Genes.
Attention for Chapter 16: Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells.
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
121 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells.
Chapter number 16
Book title
Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6518-2_16
Pubmed ID
Book ISBNs
978-1-4939-6516-8, 978-1-4939-6518-2
Authors

Krishna Mohan Parsi, Erica Hennessy, Nicola Kearns, René Maehr, Parsi, Krishna Mohan, Hennessy, Erica, Kearns, Nicola, Maehr, René

Editors

Narendra Wajapeyee, Romi Gupta

Abstract

CRISPR-Cas9 effector systems have wide applications for the stem cell and regenerative medicine field. The ability to dissect the functional gene regulatory networks in pluripotency and potentially in differentiation intermediates of all three germ layers makes this a valuable tool for the stem cell community. Catalytically inactive Cas9 fused to transcriptional/chromatin effector domains allows for silencing or activation of a genomic region of interest. Here, we describe the application of an inducible, RNA-guided, nuclease-deficient (d) Cas9-KRAB system (adapted from Streptococcus pyogenes) to silence target gene expression in human embryonic stem cells, via KRAB repression at the promoter region. This chapter outlines a detailed protocol for generation of a stable human embryonic stem cell line containing both Sp-dCas9-KRAB and sgRNA, followed by inducible expression of Sp-dCas9-KRAB to analyze functional effects of dCas9-KRAB at target loci in human embryonic stem cells.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Canada 1 <1%
Unknown 119 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 17%
Student > Master 20 17%
Researcher 18 15%
Student > Bachelor 16 13%
Other 5 4%
Other 7 6%
Unknown 34 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 45 37%
Agricultural and Biological Sciences 19 16%
Engineering 8 7%
Medicine and Dentistry 7 6%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Other 6 5%
Unknown 32 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2023.
All research outputs
#4,377,964
of 24,871,735 outputs
Outputs from Methods in molecular biology
#1,087
of 13,967 outputs
Outputs of similar age
#79,028
of 431,748 outputs
Outputs of similar age from Methods in molecular biology
#119
of 1,079 outputs
Altmetric has tracked 24,871,735 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,967 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 431,748 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 1,079 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.