↓ Skip to main content

Heterologous Protein Production in CHO Cells

Overview of attention for book
Cover of 'Heterologous Protein Production in CHO Cells'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Strategies and Considerations for Improving Expression of “Difficult to Express” Proteins in CHO Cells
  3. Altmetric Badge
    Chapter 2 Glycoengineering of CHO Cells to Improve Product Quality
  4. Altmetric Badge
    Chapter 3 Large-Scale Transient Transfection of Chinese Hamster Ovary Cells in Suspension
  5. Altmetric Badge
    Chapter 4 Cloning of Single-Chain Antibody Variants by Overlap-Extension PCR for Evaluation of Antibody Expression in Transient Gene Expression
  6. Altmetric Badge
    Chapter 5 Anti-Apoptosis Engineering for Improved Protein Production from CHO Cells
  7. Altmetric Badge
    Chapter 6 Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors
  8. Altmetric Badge
    Chapter 7 Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells
  9. Altmetric Badge
    Chapter 8 Improved CHO Cell Line Stability and Recombinant Protein Expression During Long-Term Culture
  10. Altmetric Badge
    Chapter 9 Selection of High-Producing Clones Using FACS for CHO Cell Line Development
  11. Altmetric Badge
    Chapter 10 The ‘Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity
  12. Altmetric Badge
    Chapter 11 A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data
  13. Altmetric Badge
    Chapter 12 Filter-Aided Sample Preparation (FASP) for Improved Proteome Analysis of Recombinant Chinese Hamster Ovary Cells
  14. Altmetric Badge
    Chapter 13 Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells
  15. Altmetric Badge
    Chapter 14 Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture
  16. Altmetric Badge
    Chapter 15 Glycosylation Analysis of Therapeutic Glycoproteins Produced in CHO Cells
  17. Altmetric Badge
    Chapter 16 Characterization of Host Cell Proteins (HCPs) in CHO Cell Bioprocesses
Attention for Chapter 7: Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells
Chapter number 7
Book title
Heterologous Protein Production in CHO Cells
Published in
Methods in molecular biology, May 2017
DOI 10.1007/978-1-4939-6972-2_7
Pubmed ID
Book ISBNs
978-1-4939-6971-5, 978-1-4939-6972-2
Authors

Grav, Lise Marie, la Cour Karottki, Karen Julie, Lee, Jae Seong, Kildegaard, Helene Faustrup, Lise Marie Grav, Karen Julie la Cour Karottki, Jae Seong Lee, Helene Faustrup Kildegaard

Editors

Paula Meleady

Abstract

Genome editing has become an increasingly important aspect of Chinese Hamster Ovary (CHO ) cell line engineering for improving production of recombinant protein therapeutics. Currently, the focus is directed toward expanding the product diversity, controlling and improving product quality and yields. In this chapter, we present our protocol on how to use the genome editing tool Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to knockout engineering target genes in CHO cells. As an example, we refer to the glutamine synthetase (GS)-encoding gene as the knockout target gene, a knockout that increases the selection efficiency of the GS-mediated gene amplification system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 21%
Student > Master 10 19%
Researcher 7 13%
Student > Ph. D. Student 5 10%
Student > Doctoral Student 1 2%
Other 5 10%
Unknown 13 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 38%
Agricultural and Biological Sciences 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 4 8%
Chemical Engineering 2 4%
Engineering 2 4%
Other 6 12%
Unknown 14 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 May 2017.
All research outputs
#14,740,534
of 22,689,790 outputs
Outputs from Methods in molecular biology
#4,651
of 13,045 outputs
Outputs of similar age
#184,110
of 310,040 outputs
Outputs of similar age from Methods in molecular biology
#101
of 304 outputs
Altmetric has tracked 22,689,790 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,045 research outputs from this source. They receive a mean Attention Score of 3.3. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,040 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 304 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.