↓ Skip to main content

Unconventional Protein Secretion

Overview of attention for book
Cover of 'Unconventional Protein Secretion'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 ER to Golgi-Dependent Protein Secretion: The Conventional Pathway
  3. Altmetric Badge
    Chapter 2 Unconventional Protein Secretion
  4. Altmetric Badge
    Chapter 3 Unconventional Protein Secretion
  5. Altmetric Badge
    Chapter 4 Chemical Secretory Pathway Modulation in Plant Protoplasts
  6. Altmetric Badge
    Chapter 5 From Cytosol to the Apoplast: The Hygromycin Phosphotransferase (HYGR) Model in Arabidopsis
  7. Altmetric Badge
    Chapter 6 Unconventional Protein Secretion
  8. Altmetric Badge
    Chapter 7 Unconventional Protein Secretion
  9. Altmetric Badge
    Chapter 8 Quantification of a Non-conventional Protein Secretion: The Low-Molecular-Weight FGF-2 Example
  10. Altmetric Badge
    Chapter 9 Human Primary Keratinocytes as a Tool for the Analysis of Caspase-1-Dependent Unconventional Protein Secretion
  11. Altmetric Badge
    Chapter 10 A Reporter System to Study Unconventional Secretion of Proteins Avoiding N-Glycosylation in Ustilago maydis
  12. Altmetric Badge
    Chapter 11 Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification
  13. Altmetric Badge
    Chapter 12 Unconventional Protein Secretion
  14. Altmetric Badge
    Chapter 13 Unconventional Protein Secretion
  15. Altmetric Badge
    Chapter 14 Characterization of the Unconventional Secretion of the Ebola Matrix Protein VP40
  16. Altmetric Badge
    Chapter 15 Role and Characterization of Synuclein-γ Unconventional Protein Secretion in Cancer Cells
  17. Altmetric Badge
    Chapter 16 Unconventional Protein Secretion
  18. Altmetric Badge
    Chapter 17 Unconventional Protein Secretion
  19. Altmetric Badge
    Chapter 18 Isolation of Exosome-Like Vesicles from Plants by Ultracentrifugation on Sucrose/Deuterium Oxide (D2O) Density Cushions
Attention for Chapter 1: ER to Golgi-Dependent Protein Secretion: The Conventional Pathway
Altmetric Badge

Readers on

mendeley
131 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
ER to Golgi-Dependent Protein Secretion: The Conventional Pathway
Chapter number 1
Book title
Unconventional Protein Secretion
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3804-9_1
Pubmed ID
Book ISBNs
978-1-4939-3802-5, 978-1-4939-3804-9
Authors

Corrado Viotti

Editors

Andrea Pompa, Francesca De Marchis

Abstract

Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the extracellular space. In eukaryotes, conventional protein secretion (CPS) is the trafficking route that secretory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus (GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the molecular mechanisms necessary to regulate each step of this process.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 131 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 131 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 32 24%
Student > Bachelor 18 14%
Student > Master 13 10%
Student > Doctoral Student 6 5%
Researcher 6 5%
Other 11 8%
Unknown 45 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 50 38%
Agricultural and Biological Sciences 11 8%
Neuroscience 4 3%
Chemistry 4 3%
Pharmacology, Toxicology and Pharmaceutical Science 3 2%
Other 11 8%
Unknown 48 37%